
NASA Contractor Report 201632

/ r 2.

Documentation for a Structural

Optimization Procedure Developed
Using the Engineering Analysis Language
(EAL)

Carl J. Martin, Jr.

Lockheed Martin Engineering & Sciences Company, Hampton, Virginia

Contract NASI-19000

October 1996

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-0001

Table of Contents

INTRODUCTION

SECTION 1: DESCRIPTION OF THE OPTIMIZATION PROCEDURE 2

1.1 Overview of the Optimization Procedure 2

1.2 Optimization Runstream Procedures ... 5

SECTION 2: DATA AND PROCESSORS UNIQUE TO THE OPTIMIZATION 8
PROCEDURE

2.1 Optimization Problem Definition Datasets 8

2.2 Optimization Control Parameters .. 11

2.3 Optimization Section Types and Design Variables 12

2.4 Materials File - matprop.pm .. 14

2.5 EAL Optimization Routine Special Processors 16

SECTION 3: CREATING THE OPTIMIZATION MODEL AND INTERPRETING
THE RESULTS

21

3.1 Developing an Optimization Model: The Ten-Bar Truss Example 21

3.2 Output from the Linear Programming Processor LIP4 26

3.3 Restarts and Parameter Settings ... 31

CONCLUDING REMARKS 35

REFERENCES 34

APPENDIX: Listing of the Optimization Runstream 35

INTRODUCTION

This report describes a structural optimization procedure developed for use with the Engineering
Analysis Language (EAL) finite element analysis system (reference 1). The procedure is written

primarily in the EAL command language. Three external processors which are written in FORTRAN
generate equivalent stiffnesses and evaluate stress and local buckling constraints for the sections.
Several built-up structural sections were coded into the design procedures. These structural sections
were selected for use in aircraft design, but are suitable for other applications. Sensitivity calculations

use the semi-analytic method, and an extensive effort has been made to increase the execution speed and
reduce the storage requirements. There is also an approximate sensitivity update method included which
can significantly reduce computational time. The optimization is performed by an implementation of the
MINOS V5.4 linear programming routine (reference 2) in a sequential linear programming procedure.

This document is divided into three sections. The first is a description of the EAL optimization

procedure and the various routines involved. The second section describes the various data inputs and
special processors developed for the optimization process. The final section describes the application of
this process to a structural design problem. A ten-bar truss is used as an example case for the
optimization procedure. The output from the linear programming routine is also discussed in this
section. The appendix contains the listing of the entire EAL optimization mnstream procedure, and the
comments contained within the runstream provide additional documentation.

SECTION 1: DESCRIPTION OF THE OPTIMIZATION PROCEDURE

The structuraloptimizationprocedure describedinthisreportisa combination of EAL analysisand

databaseprocessors,EAL command language routines,and threespecialprocessors(LIP4,MBED, and

CONS) writtenin FORTRAN and linkedtothe EAL executablecode. This sectionprovides an

explanationof the overallprocedure logicand a briefdescriptionof each runstrcam procedure. A listing

of the complete optimizationrunstrcam iscontained inthe appendix. This structuraloptimization

process iswrittenin EAL command language and uses EAL utilityprocessorsextensivelyforthe matrix

operationsand datamanipulation. An understanding of theEAL command language and structural
analysisprocessorsisnecessaryfor interpretingthe detailsof thisprocedure. This sectionisintended

only to provide an overview of themethods used and a briefexplanationof each procedure.

I.I Overview of the Optimization Procedure

A flow chartof the optimizationprocedure isshown infigureI.I.This sectionprovides overviews of

the optimizationmethodology and thefunctionsof the individualrunstream procedures. A brief
explanationofeach major element inthe flow chartfollows.

Define modd and optimization problem

This block representsthe datawhich definethe structuralanalysisand theoptimizationproblem. This is

the only portionof the optimizationrunstream which should requiremodificationby theuser. The finite
clcment model definitioniscontained inthe INIT MODL runstream procedure. The INIT MODL

procedure issimply an EAL staticanalysisrunstrcam through theprocessorTAN with the design
regionsdefinedas element groups. Various optimizationcontrolpararnctcrs,such as number of

iterationsand initialmove limits,are dcfmed inthe SET PARA procedure. The DESV DEFI procedure

containstablesCOMP GRP, COMP DV, DEFL DEFI, and Exx LENG which describethedesign
regions,design variables,and constraints.These procedures arccxccuted once atthe startof the
optimizationprocess.

Static analysis and constraint evaluation

The first step in any optimization iteration is a static analysis and constraint evaluation with the latest
values of the design variables. This is controlled by procedure CALC STAT. CALC STAT calls the

procedure SECT INIT which executes the section stiffness processor MBED which generates new
element stiffnesses based on the current design variable data. This data is then embedded into the
appropriate element efile locations using EAL processor EI1. CALC STAT then controls the execution

of a static structural analysis by calling the appropriate EAL processors. Procedure CALC N is called to
compute the element stress resultants. Element stress and local buckling constraints are then calculated
in the processor CONS. Displacement constraints are then added to the STRS CONS lset 1 dataset in
the procedure DISP CONS.

Evaluate penalty

A penalizedobjectivefunction,or simply a penalty,based on the violatedconstraintsiscalculatedin
procedure CALC PEN. The penaltyiscalculatedas follows:

penalty- objectivefunction+ KPEN * Z (violatedconstraints)

where KPEN is a penalty parameter set by the user in procedure SET PARA. This penalty is used by the
linear programming routine in an L1 Penalty formulation and also to evaluate the latest optimization

cycle. For the L1 Penalty formulation to converge, the value of KPEN must be larger than the largest
constraint Lagrange multiplier. However, a very large value will reduce the move limits too rapidly. If
the penalty increases from one cycle to the next, the latest optimization results are discarded and the

optimization proceeds from the previous step (Reset design). The procedure is designed to continually
reduce this penalty as the optimization progresses and the constraints become better satisfied. An

2

optimization problem

Constraint Evaluation

P

penalty
no

Reset design

'es

approximate,_.

_;exact

reduce move limits

n

Calculate exact
constraint derivatives

Call Linear Programming
routine for resizing

Figure 1.1 Flowchart of the Optimization Procedure

r

of constraint derivatives

increase in the penalty after an optimization cycle generally indicates the current linear constraint
sensitivities are of poor quality over the move limit range. The penalty is calculated from exact
constraint calculations whereas the optimizer uses linear sensitivities to predict constraint values. A
rising penalty indicates the linearized sensitivities over the move limits used in the last optimization
cycle are probably not satisfactory. If these sensitivities are approximate updates (a minor iteration),
they need to be recalculated with the exact sensitivity formulation (a major iteration). If the previous
sensitivity calculation was exact, the move limit is cut in half (reduce move limits), and the linear
programming processor is called again.

Calculate exact constraint derivatives.

The calculation of the objective function and constraint derivatives (a major iteration) consumes by far
the most computer time. A great deal of effort has gone into making this process as efficient as possible.
The sensitivity calculations are controlled by the procedure CALC SENS. The sensitivities calculated in
the CALC SENS procedure are called "exact" even though there is extensive use of finite difference in
their calculation. The term "exact" is used to differentiate these sensitivities from those calculated with

the more approximate update method described below. The SECT INIT procedure is used to compute
stiffness submatrices for both the original and perturbed values of each design variable. The derivative
of the stiffness matrix is approximated by finite difference using the original and perturbed stiffness
submatrices in procedure CALC DUDV. This procedure also computes the derivative of the

displacement vector using the semi-analytical method. A perturbed displacement vector is approximated
using a Taylor's series expansion. Stress resultants of the perturbed design are computed in the
procedure CALC DELN, and constraints are computed using these stress resultants and the perturbed
design variable using processor CONS. Displacement constraints are evaluated in the procedure DISP
CONS. In addition, CALC MASS is called to compute the perturbed objective function. Sensitivities

for both the constraints and objective function are computed by finite difference. An exact sensitivity
analysis will be computed when; 1) the number of approximate iterations exceeds parameter MMINOR,
2) the penalty from the last approximate iteration increases, or 3) no sensitivities exist (the first
optimization iteration).

Approximate update of constraint derivatives

The optimization procedure allows the option of using an approximate constraint sensitivity update
method (a minor iteration) instead of an exact sensitivity calculation for each linear programming
optimization iteration. The procedure UPDA GRAD uses the values of the constraints from the most
recent static analysis and constraint sensitivity values to update the constraint gradients. The method is
described in detail in reference 3. Approximate iterations will be performed as long as the minor
iteration limit (parameter MMINOR) has not been exceeded and the computed penalty is decreasing. An

increasing penalty indicates the quality of the approximate sensitivities is no longer acceptable.

Call Linear Programming routine for resizing

The LIP4 processor implements the MINOS V5.4 linear programming routines for the optimizer.
The constraints and constraint sensitivities are assembled for use by LIP4 in the procedure ADS CONS.
See the description of the LIP4 processor in section 2.5 for more information on the linear programming
implementation. The outputs of the LIP4 processor are new design variable values and linear
approximations of the constraint values. This new design is contained in the dataset X ADS and will be
copied to the COMP DV dataset in preparation for the next iteration.

Since there is no convergence criterion implemented, the optimization procedure will continue until the
number of major iterations reaches the limit. It is left to the user to evaluate the output to determine
when satisfactory convergence has been achieved. The process may be restarted from any design point
by using the complete design history which is stored in Library 3.

1.2 Optimization Runstream Procedures

The following is an alphabetical listing of the various procedures in the optimization runstream. It is
designed to help the user understand the flow of the process. It is recommended that the user examine
the comments in the procedure listing for more detailed information.

ADS CONS
Assembles constraints and constraint sensitivities into table formats to be read by the linear

programming processor LIP4. The ADS in the name once referred to ADS optimization routines, but
this procedure now formats data for use by LIP4.

Called by: DRIV OPT
Calls: none

ADS INIT

Initializes data tables such as X ADS (design variables) and XB ADS (design variable bounds) for use

by linear programming processor LIP4. This routine determines required dataset sizes and reserves the
space by creating the tables. The ADS in the name once referred to ADS optimization routines, but this

procedure now formats data for use by LIP4.
Called by: DRIV OPT
Calls: none

CALC DELN

Calculates perturbed displacements based on displacement derivatives from CALC SENS using a
Taylor's series expansion. It also computes stress resultants based on perturbed design variables and

displacements.
Called by: CALC SENS
Calls: CALC N

CALC DUDV

Calculates displacement derivatives with respect to design variables by computing dK/dV of stiffness
matrix subset using finite difference and then using the semi-analytical sensitivity formulation.

Called by: CALC SENS
Calls: none

CALC MASS

Computes the mass of the structure for use as the objective function from density, cross-section, and
geometry data contained in the element efile.

Called by: CALC STAT, CALC SENS
Calls: MASS GRP1, MASS GRP2

CALC ML

Computes the design variable move limits before each call to the linear programming processor LIP4.
This routine combines the upper and lower bounds from the COMP DV dataset and the move limit

fraction specified by parameter ML.
Called by: DRIV OPT
Calls: none

CALC N

Calculates the stress resultant for the active design groups of the various element types using EAL

processor ES.
Called by: CALC STAT, CALC DELN
Calls: STRS GRP

5

CALC PEN

Calculates the penalty value using the violated constraints.
Called by: DRIV OPT
Calls: none

CALC SENS

Controls the sensitivity calculations for the design variables. Loops through the design variables,
perturbs each, and controls sensitivity calculations of the displacements, constraints, and mass using the
semi-analytical method and finite difference.

Called by: DRIV OPT
Calls: SECT INIT, CALC MASS, CALC DUDV, DISP CONS, ELEM MBED

CALC STAT

Performs static analysis of structure using the current values of the design variables. Calculates the
stress resultants and the structural mass.

Called by: DRIV OPT
Calls: SECT INIT, CALC N, CALC MASS

CLEA NL01

This routine deletes datasets which are no longer needed in library 1 (L01) and then packs the library.
This helps keep disk usage to a minimum.

Called by:
Calls: none

DESV DFN

In this routine the user inputs data tables which define the optimization problem. These tables are the
COMP GRP, COMP DV, DEFL DFN, Exx LENG ngrp, and LCAS SET datasets which are described in
section 2.1 of this documentation. This routine is meant to be modified by the user.

Called by: DRIV OPT
Calls: none

DISP CONS

Gets the displacement limits from DEFL DEFI dataset and also the computed displacements from STAT
DISP and calculates the constraint value or constraint sensitivity. These are then written to the STRS
CONS or STRS DCON datasets.

Called by: DRIV OPT, CALC SENS
Calls: none

DRIV OPT

This procedure controls the optimization process. This is the top level runstream procedure which

controls major and minor iterations, computes penalties, and calls the linear programming routine.
Called by: none

Calls: SET PARA, DESV DEFN, INIT MODL, ADS INIT, CALC STAT, CALC SENS,
CALC ML, ADS CONS, CALC PEN, CLEA NL01, DISP CONS, UPDA GRAD

ELEM MBED

This procedure takes section and element data produced by processor MBED and uses the EAL EI1
processor to embed the section data into the element efile.

Called by: SECT INIT, CALC SENS
Calls: none

INIT MODL
Thisprocedurecontainsthefmite elementmodel;nodes,elements,boundaryconditions,andloads,for
theoptimizationproblem. ThisprocedureisessentiallyanEAL staticanalysisthroughprocessorTAN
andisoneof threewhichwill requireusermodification.

Calledby: DRIV OPT
Calls:none

MASS GRP1
Calculatesmassof onedimensionalelementtypesby extractingelementlength,cross-sectionalarea,
anddensityfrom theefile andthensumsthemassof theelementsof thattype.

Calledby: CALC MASS
Calls:none

MASS GRP2
Calculatesmassof twodimensionalelementtypesby extractingelementareaandunit weightfrom the
efile andthensumsthemassof theelementsof thattype.

Calledby: CALC MASS
Calls:none

SECT INIT

This procedure controls the calculation of element stiffnesses from the design variables, the placement
of these stiffnesses in the element efile, and the creation of stiffness submatrices for sensitivity
calculations. The stiffnesses for elements related to the current design variable are calculated by

processor MBED which outputs datasets containing the stiffness and mass data as well as a table of the
affected elements. This data is written to the efile by procedure ELEM MBED. Element stiffnesses for
affected elements and stiffness submatrices are then computed by EAL processors EKS and LSK.

Called by: CALC STAT, CALC SENS
Calls: ELEM MBED

SENS FILT
Selects element groups for which sensitivities are to be calculated when GLIM <0.0. If the maximum
constraint value for a group is less than GLIM, the group is marked as inactive.

Called by: DRIV OPT
Calls: none

SET PARA
Initializes various optimization and sensitivity calculation parameters such as f'mite difference step size
and number of iterations. This routine is meant to be modified by users.

Called by: DRIV OPT
Calls: none

STRS GRP

This procedure loops through all the groups of the specified element type and determines which are
active design groups and commands processor ES to calculate stress resultants for these groups.

Called by: CALC N
Calls: none

UPDA GRAD

This procedure calculates updated constraint gradients using an approximate method. The formulation
of the approximate gradient update is contained in reference 3. The approximate gradient update is
computed during a "minor" iteration and requires much less computer time than the full sensitivity
calculation or "major" iteration.

Called by: DRIV OPT
Calls: none

7

SECTION 2: DATA AND PROCESSORS UNIQUE TO THE OPTIMIZATION
PROCEDURE

This section of the report describes the various inputs, element section types, and special processors
which have been defined specially for this optimization procedure. Explanations for the remaining
runstream elements are contained in the EAL users manual. This section serves as a reference guide to
the datasets and parameters in the optimization procedure and, in conjunction with section 3, guides the
user in implementing an optimization problem. Five major topics are covered: 1) the required input
datasets, 2) the optimization control parameter settings, 3) the section definitions for the various

element types, 4) the materials data file, and 5) the special processors implemented for this procedure.

2.1 Optimization Problem Definition Datasets

COMP GRP

The COMP GRP dataset defines the material and section type for a design group and also links the
group to the corresponding design variables in dataset COMP DV. The table parameters for COMP
GRP are N'I- 4 and NJ-the number of active design groups. An active design group is any EAL element
group subject to design and constraint evaluation. A group becomes an active design group by being
listed in COMP GRP. The first column, as shown in the example dataset below, contains the component
number. The component number associates the active design groups with the related design variables in
the COMP DV table. More than one COMP GRP entry earl reference the same component. In the
example, E33 group 1 and E43 group 1 are in the same component. This would result in the two groups
having the same design variables and section properties. The second column is the material and section

type indicator. For certain types of elements there are various construction types which use different
stiffness, stress, and weight formulations. Plate elements (E33 and E43) have four different section

models; 1) isotropic honeycomb (0<type<1000), 2) corrugated shear web (1000< type<2000), 3)
composite honeycomb (2000<type<3000), and isotropic flat plate (3000<type <4000). See section 2.3
for an explanation of the various section types. The thousands place in the column two entry specifies
the section type. The remaining three digits specify the material. For example the fast component (J--l)
uses section 1 and material 1. The sixth component (J-8) uses section 2 and material 3. The third
column is the EAL element type. The optimization procedure will only handle E21, E23, E33, and E43
type elements. Other element types may be contained in the model, and they will retain their initial

material and section data throughout the optimization. The fourth column is the element group number
as def'med by the El,D/GROUP command. Note that EA3 group 3 is not defined in COMP GRP.
Elements in this group will retain their initial section properties as defined in TAB/SA section def'mition.
An example COMP GRP dataset is shown below.

TABLE (NI-4,NJ- 10,TYPF__,_): COMP GRP
$ IN TABLE COMP GROUP NI-4, NJ=TOTAL NUMBER OF ELEMENT GROUPS
$ I=1; COMPONENT NUMBER - FOR ASSOCIATION IN COMP DV
$ 1--2;
$ 1-3;
$ I-4;
J--l: 1
J-2:2
J=3:1
J=4:2
J-5:5
J-6:3
J-7:4
J-8:6
Jz9:7
J-10:8

MATERIAL AND SECTION TYPE INDICATOR

ELEMENT TYPE (E21 ,E43,ETC)
ELEMENT GROUP NUMBER

1 E33 1
2 E33 2
1 E43 1
2 E43 2
5 E21 1
5 E23 2
5 E23 1
1003 E43 4
1004 E43 5
1 E43 6

8

COMP DV
The COMPDV datasetcontainsthecurrentvalueof thedesignvariables,lower andupperbounds,scale
factors,anda linking to theCOMPGRPdataset.ThesampleCOMPDV datasetshownbelow isrelated
to thepreviousexampleCOMPGRPdataset.Thefin'stcolumnof COMPDV is thecomponentnumber.
Thecomponentnumberrelatesthedesignvariablesto theelementgroupsasdefinedin COMPGRP.
The secondcolumnis thedesignvariablenumberin thatcomponent.For example,component5
0-7,10) has four design variables. From the COMP GRP dataset it can be determined that the
component 5 is an E21 beam element. The beam in the optimization model is a symmetric wide flange
beam which has four design variables; 1) flange width, 2) flange thickness, 3) web height, 4) web
thickness (see section 2.3). Column 3 is the current value of the design variable. This is the only COMP

DV entry which will change during the optimization procedure. Column 4 and 5 are the lower and
upper bounds on the design variables. These are generally established by physical considerations such
as minimum gages. The bounds during any call to the optimizer are established by a combination of
these bounds and the move limits (parameter ML). Columns 6 and 7 are coefficients in a linear

expression relating the design variable to the physical quantity it re.presents. Column 6 is the constant
term (CO) and column 7 is the linear multiplier (C 1) in the expression physical value-C0+C 1*design
variable. For component 3, an E23 rod element, the physical quantity is cross-sectional area which will
be defined as area--0.+l.0*(0.2) where 0.2 is the design variable value, C0--0, and C1--1.0. The
selection of the CO and C 1 can be beneficial in scaling the design variables and making the output easier

to interpret. If the coefficient C 1 is zero, then the design variable value no longer affects the design and
no sensitivities are calculated for that design variable (it is no longer considered active). One use of this
feature can be to deactivate areas of the structure whose designs are no longer changing such as areas

which have reached minimum gage. This will reduce the problem size and run times because fewer
sensitivities are required. Be careful when doing this though as constraints for the group are still
evaluated and their values need to be monitored. Column 8 is an internal design variable status flag
which will be set by the runstream. The user just needs to allocate space for this column at the start of

the run. A sample COMP DV dataset is shown below.

TABLF_,(NI-8,NJ-41): COMP DV $ design variable def'mition
$ I--1: Component Number - correspondence with COMP GRP
$ 1-2:
$ 1-3:
$ 1=4:
$ 1--5:
$ 1--6:
$ 1=7:
$ 1-8:
J-l: 1.
J=2: 1.
J=3: 2.
J-4: 2.
J--5: 3.
J-6: 4.
J-=7: 5.
J-8: 5.
J-9: 5.
J-10: 5.
J-- 11: 6.
J-12: 7.
J-13: 8.
J-- 14 : 8.

Design variable number in component

Design variable value
Lower bound on design variable
Upper bound on design variable
Constant CO in linear formulation of val-C0+CI*DV
Coefficient C1 in linear formulation of val-C0+CI*DV

Status flag of design variable (controlled by program)
1.0 1. 0.1 2.5 0. .2 0.
2.0 .5 0.05 1. 0. 5. 0.
1.0 1. 0.1 2.5 0. .2 0.
2.0 .5 0.05 1. 0. 5. 0.
1.0 .2 0.125 5.0 0. 1. 0.
1.0 .4 0.125 5.0 .3 0. 0.
1.0 1. 0.1 2.5 0. .1 0.
2.0 1. 0.25 3. 0. 1. 0.
3.0 1. 0.1 2.5 0. .1 0.
4.0 1. 0.25 5. 0. 1. 0.
1.0 .8 0.5 6.0 0. .01 0.
1.0 .8 0.5 6.0 0. .01 0.

1.0 1. 0.1 2.5 0. .2 0.
2.0 .5 0.05 1. 0. 5. 0.

9

DEFL DEFI

The deflection definition dataset, DEFL DEFI, defines deflection constraints for the optimization. The
parameters for the table are NI-3 and NJ.-the number of deflection constraints. Deflection constraints

defined in the DEFL DEFI table are applied to all load cases and all load sets. The first column (I=1) is
the node number at which the constraint is applied. The second column (I-2) is the constrained

direction (a number 1 thru 6) in the nodal coordinate system, and the third column (1-3) is the deflection
limit. Decimal points are required on all entries to prevent an EAL error. The deflection constraints in
the optimization are posed as:

computed deflection
constraint value = deflection limit - 1.

which means that the second constraint in the example below would require the deflection at node 103 in
the 3 direction to be greater than -100. A DEFL DEFI dataset must exist or a run time error will occur.

This requires that at least one deflection constraint be defined for all problems. A dummy constraint
may be required in some cases. This can be written either for a constrained node or by supplying a very
large deflection limit to any node. An example DEFL DEFI dataset is shown below.

TABLE(NI-3,NJ-2): DEFL DEFI
J-l: 29. 2. 36.
J-2: 103. 3. -100.

$ deflection constraints

$ joint 29, direction 2, 36 units
$ joint 103, direction 3, - 100 units

Exx LENG ngrp

The Exx LENG ngrp datasets define characteristic lengths used in local buckling checks on the elements
in group "ngrp" for element type "Exx". These tables are used by the processor CONS. The current
applicable element types are E21, E33, and E43 - no buckling checks are performed on E23 elements.

The Exx LENG ngrp datasets have table parameters NI-_I and N J-, the number of elements in the group.
The table entries will then be the characteristic length to be used for constraint calculations for each

element. These datasets are not required, and if they are not present CONS will use the characteristic
length given by reset BLEN. Example entries are shown below.

TABLE(NI-1,NJ-25): E43 LENG 3

Izl: J-_1,15: 18. $ elements 1 thru 15 have 18 in. length
J-16,25: 24. $ elements 16 thru 25 have 24 in. length

TABLE(NI--1,NJ-2): E21 LENG 1
J-l: 12.
J--2: 18.

LSET CASE

The LSET CASE dataset defines the number of load cases in each load set. This table has parameters
NI,.2 and NJ-the number of load sets. Note that only the first column (I-- 1) of the dataset is required -
the second column is defined internally. The entries are the number of load cases for each set. See

section 3.1 for a discussion of the organization of load sets and cases. An example LSET CASE dataset
is shown below.

TABLE(NI--2,NJ--3,TYPE-_0): LSET CASE
Ira1: Jml: 3 $ load set 1 has 3 load cases

J.-2:1 $ load set 2 has 1 load case
J--3:5 $ load set 3 has 5 load cases

10

2.2 Optimization Control Parameters

There axe a number of parameters which control various facets of the optimization procedures. These
are contained in the SET PARA procedure of the optimization control runstream. A brief explanation of

each parameter is given below.

NDV The number of independent design variables for the optimization problem. This will also
be the number of rows (N J) in the COMP DV dataset. (integer)

MMAJOR

MMINOR

Maximum number of major iterations to be performed during an optimization run. A
major iteration includes a full recalculation of sensitivities. (integer)

Maximum number of minor iterations to be performed in any major iteration. A minor
iteration uses an approximate method to update sensitivities. The execution of minor
iterations will cease when constraint error levels cause the penalty to increase. (integer)

ML The design variable move limits coefficient. The current value of each design variable is
multiplied by parameter ML to obtain its move limits for that cycle. This value may be
reduced automatically as the optimization proceeds based upon changes in the penalty
value. (real)

DR Finite difference step size fraction for the sensitivity calculations. Actual step sizes for
each design variable are formed by multiplying DR and the current design variable value.
(real)

RHOKS

NLST

NUMD

Constraint lumping parameter. The value is used for reset RHOK when calling the

CONS processor. A negative value turns off constraint lumping. A positive value
utilizes K-S function constraint lumping with the value RHOKS used as the function

parameter rho. (real)

Number of load sets applied to model. Each load set should have either different
boundary conditions or a different temperature set. See section 3.1 for further

explanation of load case and set organization. (integer)

Number of displacement constraints applied. Should be the same as NJ in the DEFL
DEFI dataset. At least one displacement constraint is required. (integer)

KPEN The parameter used for computing the penalty for violated constraints. It is suggested
that it be on the order of the objective function to start with, and it should never be less
than the largest Lagrange multiplier printed by the LIP4 processor. Too small a value of
KPEN will leave constraints violated and too large a value will reduce move limits too

quickly. (real)

BLEN Default characteristic buckling length used by processor CONS if an Exx LENG ngrp

table is not provided. See the description of processor CONS in section 2.5 for a further
description. (real)

GLIM Constraint sensititivity calculation filter limit. For GLIM < 0.0, element groups with a
maximum constraint value less than GLIM will not have constraint sensitivities

calculated. This can save computer time for problems with large numbers of inactive
constraints. If GLIM _>0.0, sensitivities are calculated for all design groups. (real)

In addition, a number of storage libraries for the data generated during the optimization procedure are
defined in the SET PARA procedure. These should not require any modification.

11

2.3 Optimization Section Types and Design Variables

Aircraft construction in general utihzes built-up structure, and some of these construction types have
been coded into the optimization procedure. The design variables are assigned to key parameters of the
built-up structures, and constraints are calculated using typical design rules for the section type. This
allows for reasonable modeling of entire aircraft or large components with a reasonable number of
design variables and with meaningful constraints. The MBED and CONS processors generate
stiffnesses and evaluate constraints for the following section types.

Wide Flange Beam (E21)

I_- bl--=-I ...__tl
I I

,-f
2

t2--..-_ 4-
I I-

Desian Variables

1) flange length b 1

2) flange thickness t 1

3) web height b2

4) web thickness t2

The wide flange beam element is currently the only option available for E21 elements. It is similar to

the WFL section described in section 3.1.9 of the EAL Reference Manual, except that it is symmetric.
There are four design variables; flange length, flange thickness, web height, and web thickness. The

constraints evaluated for this section are: 1) maximum stress, 2) beam buckling, 3) flange local buckling,
and 4) web local buckling. The beam orientation and reference frame are the same as for the EAL WFL
section.

Axial Rod Element (E23)

a_) Desi0n Variable1) cross-sectional area

The axial rod element has only one design variable - the cross-sectional area. The only constraint is the
maximum stress.

Isotropic Honeycomb Sandwich Plate (E33 and EA3)

(t

IllllIl[ll[ll[lllllillllllJ_
Design Variables
1) face sheet thickness t
2) honeycomb core height h

The honeycomb sandwich section is used for plate elements with section identification numbers less

than 1000. The section has two design variables; face sheet thickness and honeycomb core height.
Constraints utilized for this section are von Mises stress in the face sheets and local plate buckling. The
buckling constraint is based on a biaxial loading with a shear interaction. The plate is considered as
square with side length specified in the "Exx LENG ngrp" dataset for buckling calculations.

12

Corrugated Shear Web (E33 and E43)

Desian Variable

1) thickness t

The corrugated web section, implemented for use as a shear web, is used for elements with section
numbers between 1000 and 2000. The corrugations modeled are 60 ° circular arc corrugations with a 1.5
inch radius. The only design variable is thickness. The material axes are as defined in the figure above,
and the user should take care to orient the element stress reference frame appropriately. Constraints for

this section are von Mises stress, plate shear buckling, and local shear buckling. For the shear buckling
constraint evaluations, a semi-infinite plate with side length specified in the "Exx LENG ngrp" dataset is

assumed. Constraint equations used are derived from a study using finite element analysis by NASA

Langley's Thermal Structures Branch.

Composite Honeycomb Sandwich Plate (E33 and E43)

_____t0't90't45't-45

t45=t-45

iiiirllpii[llllllllllllllll
DQsian Variables
1) 0 ° lamina thickness (one face)
2) 90* lamina thickness (one face)
3) 45 ° lamina thickness (one face)
4) honeycomb core height

A composite honeycomb sandwich section is used for elements with section numbers between 2000 and
3000. The section is assumed to be balanced and symmetric, and the core height is great enough so that
the location of the individual plies in the face sheets does not affect the overall bending stiffness. These

assumptions along with limitations on ply angles reduces the number of design variables to four. They
are: 1) total thickness of 0 ° plies in one face, 2) total thickness of 90 ° plies in one face, 3) total
thickness of +45* plies in one face, and 4) the honeycomb core height. In the calculations, a -45* ply
thickness equal to the thickness of +45 ° plies is used. Constraints used are maximum allowable strain,
which can be different in tension and compression, and local panel buckling. The buckling constraint is
based on a biaxial loading of an orthotropic plate with a shear interaction. The plate is considered as
square with side length specified in the "Exx LENG ngrp" dataset for the buckling calculation.

Isotropic Fiat Plate (E33 and E43)

/ Desian Variablet 1) thic:kness t

An isotropic plate section is used for elements with section numbers between 3000 and 4000. The single
design variable for this section is the plate thickness, t. Constraints utilized for this section are yon
Mises stress and local plate buckling. The buckling constraint is based on a biaxial loading with a shear
interaction. The plate is considered as square with side length specified in the '_Exx LENG ngrp" dataset
for the buckling calculation.

13

2.4 Materials File - matprop.prn

Material properties for elements being designed are contained in an external file which must be named

matprop.prn and reside in the current directory. The file includes the material modulus, density, and
strength data and is read by processors CONS and MBED. The file structure allows for the definition of

multiple materials and temperature dependent properties. The format used is based on one used by
another design tool, and thus there are many values which are not used for the EAL optimization.
Example material file inputs for isotropic and composite materials are shown below. The material

number corresponds to the material number specified by the material and section type indicator in the
COMP GRP dataset (see section 2.1). If temperature dependent properties are used, data blocks for a

material should be contiguous and in ascending temperature order. If EAL temperature datasets (NODA
TEMP or TEMP Exx) are present, temperature dependent properties are expected.

The optimization procedure was initially implemented to perform preliminary design optimization for
aircraft, and therefore uses some aircraft design methodology. Generally for aircraft design, stresses in
isotropic materials must be below the ultimate strength at the ultimate load level and below the yield
stress at limit load. The ultimate load factor is generally 1.5. The constraint processor CONS expects
the input loads to be ultimate loads. Based upon these assumptions, the limiting strength value will be
the lesser of the ultimate strength or the yield stress multiplied by 1.5 (the assumed load factor). While

the user may not use this design philosophy, it must be understood so that appropriate material limits
can be supplied in the matprop.prn file. For composite laminates, the strain limits supplied are applied
to the ultimate (or input) loads. The units for the material properties supplied in this file are of the user's
choice, but they must be consistent with the units in the f'mite element model and the loads. For

honeycomb sandwich sections the user is asked to supply two densities. The density of the face sheet
material (density) and the honeycomb core effective density (core density), and these two entries should

have the same units. If the core density value is omitted, a core density of 2% of the face sheet density
will be used.

For an isotropic material the input is as follows:

Material Number Description of the material (optional)
Temperature Elastic Modulus 0. Shear Modulus Poisson's ratio

0. density ultimate strength 0. 0.
0. yield strength 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.

CTE (ct) 0. 0. 0. core density

14

For a composite lamina the material input is shown below. The sign used for the compressive strain
limit in the materials file is not important. A limit of 0.005 and -0.005 will produce the same result.

Material Number Description of the lamina (optional)

Temperature E 11 E22 G 12 v 12

v21 density (el 1)max. tension (el 1)max. comp. (e22)max. tension

(e22)max. comp 0. 0. 0. 0.

(_'12)max. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.

ct 11 t_22 0. 0. core density

A sample materials file for an isotropic material is listed in section 3.1.

15

2.5 EAL Optimization Routine Special Processors

LIP4

This processor implements a linear programming routine or optimizer. The routine implemented at this
time is MINOS V5.4. The processor reads the tables of the design variables and bounds, the objective
function, the constraints, and all the sensitivities and converts this data into a form used by the linear
programming subroutine. Most of the datascts are similar to those described for the EAL processor
ADS. Additional optimization controls are provided through processor resets. The linear programming
routine is called by processor LIP4 which returns the new design data. Constraints that cannot be
satisfied within the LP approximate problem can utilize an L_inf penalty to reduce the maximum

constraint violation, or an L1 penalty formulation as described in reference 5. The new design
description is written to appropriate tables on exit from the processor.

Input Datasets:
X ADS i I, i=I,2,3, Design variables before optimization

XB ADS i 1, i= 1,2,3, Lower and upper bounds for X

FADS1 1 ObJective function value before optimization

DF ADS i I, i-1,2,3 Objective function gradients

G ADS 1 j, j-1,2,3, Constraint values before optimization (satisfied if <-0)

GB LIP 1 j, j=1,2,3 OPTIONAL, allows constraints to be specified with lower and
upper bounds on G instead of the standard <-0 form.

DG ADS i j or 1)(3 LIP i j Constraint gradients. Dimensions will be NI = # of design
variables in D.V. set i, NJ = number of constraints in constraint set

j. Using the DG ADS version, the dataset can be filtered by the
CUTOFF reset before optimization. Using the DG LIP version, the
entire dataset is utilized by the optimizer with any CUTOFF
ignored.

XNORM LIP i 1, i-1,2,3 OPTIONAL, optionally used if CUTOFF > 0., otherwise not used.
Utilized to normalize constraint gradients with respect to the
design variables when determining which elements are ignored
(i.e., assumed zero).

Output Datasets:
X ADS i 1, i=1,2,3, Design variables after optimization

FADS1 1 Linearized objective function value after optimization

G ADS I j, j=I,2,3, Linearized constraint values after optimization

COG LIP 1 j Lagrange multipliers (Costate of G)

OUT LIP 1 1 Contains the value of the objective function penalty used.

16

Resets:(only first 4characterssignificant)
NUIN Library numberfor input datasets(default--1)

IPRI Print flag (default--3)

CUTOFF Constraintgradients(possiblynormalizedby XNORM) smallerthan
CUTOFF*maxgradientareignored(i.e.,assumedzero). This can
reducethesizeof largeproblems.(default--0.)

NMDG Maximumnumberof non zerotermsallowedin all DG ADS i j
(default--100000)

LPENALTY Flagfor penaltyon theoptimization.Nopenaltyusedif LPEN-----0,
L1 penaltyusedif LPEN=I, otherwiseL_inf penaltyused.(default--0)

KPENALTY Objectivefunctioncoefficientfor penalties (i.e.,KPENALTY* constraint
violation is addedto objectivefunction)

ITER Iterations(intemalMINOSparameter)allowed. Ignoredunless> 0
(default*O)

IEQUAL ForLPENzl, constraintsnumberedIEQUAL andgreaterwill not be
includedin determiningtheobjectivefunctionpenalty. (default-0).

IZERO If IZEROis nonzero,allowszerorows in DG ADS. By defaulterror
exit returnedif arow is zero.(default---0)

ISCALE Scaleflag (internalMINOSparameter)(default-2)

Theinput datasetstructureof the LIP4 processor has been designed to provide for flexibility of input
that most users will never require. The optimization runstream will construct all required tables for a
basic optimization problem. The structural optimization problem data as described in this
documentation will be contained in X ADS 1 1, XB ADS 1 1, F ADS 1 1, DF ADS 1 1, G ADS 1 1, and
DG ADS 1 1. The variable i's and j's in the dataset names allow for the user to def'me additional design

variable groups and/or constraint groups in a simple manner. For example, an additional group of
design variables could be added by creating datasets X ADS 2 1 (the additional design variable values),
XB ADS 2 1 (the bounds on X ADS 2 1), DF ADS 2 1 (the sensitivities ofF ADS 1 1 with respect to

the design variables in X ADS 2 1), and DG ADS 2 1 (the sensitivities of the constraints in G ADS 1 1
with respect to the design variables in X ADS 2 1). If an additional group of constraints is desired, they
could be placed in dataset G ADS 1 2. The sensitivities of the new constraints should then be in DG
ADS 1 2 (with respect to the design variables in X ADS 1 1) and DG ADS 2 2 (with respect to the
design variables in X ADS 2 1). A practical example of when a user might use this feature would be if
additional, user defined constraints, such as flutter, were required. If five additional constraints were
added, they would be placed in G ADS 1 2 whose parameters are NI= 1 and N J--5. The additional
constraint sensitivities would be placed in DG ADS 1 2 with parameters NI,_number of design variables
and NJz5 (number of constraints).

17

MBED
TheMBED processorwritessectioninformationfor the elements based on the current design variable
data and section definition. The MBED processor creates a table (EMBE EFIL) containing section
stiffness properties for each element in the specified design component. The design component is
selected by the processor reset COMP. The reset COMP corresponds to the component number (the
I--1 entry) in the COMP GRP dam,set. The first six values in the EMBE EFIL dataset are the material

property (segment 2) data and the remaining data are the section property (segment 4) information. This
is described in section 4.5 of the EAL manual. Also created is a table of element groups (EMBE GRP)
for which properties have been generated. The EMBE GRP table is used in conjunction with the
EI1/EMBED command and directs where the efile data is to be embedded. In addition, a table of
elements to be modified (ETAB LIST) is created for use with the SELECTION command of the EKS

processor. These are the elements, specified by absolute index number, for which EKS will generate
new element stiffnesses.

Stiffnesses are calculated in MBED based upon the design variable values contained in the COMP DV
dataset and the section and material definitions contained in the COMP GRP dataset. Column 2 (I=2)

contains the material identification number and section type (if applicable) for the component. See the
description of the COMP GRP and COMP DV datasets for more details. The material identification

number corresponds to material properties data contained in the external file named matprop.pm. This
file contains modulus, density, and stress (or strain) limits for all the materials used in the model and

must be present. The processor MBED takes the design variable data and the section and material
information and computes the areas, moments of inertia, and stiffnesses required in the element efile. At
present, the MBED processor does not incorporate temperature dependent material properties. The
addition of this capability is planned in the near future.

Input Datasets:
COMP GRP Design component specification table

COMP DV Design variable definition table

DEF Exx EAL element definition file for element type Exx

GD Exx EAL group definition file for element type Exx

NODA TEMP iset

TEMP Exx iset

Nodal temperatures (optional - not currently implemented)

Element temperatures (optional - not currently implemented)

Output Datasets
EMBE EFIL Section stiffness data to be embedded in efile for each element

EMBE GRP List of element groups to which EMBE EFIL data is to be embedded

Resets
ETAB LIST

NUIN

Table of elements to be processed by EKS via the SELECTION command

Library number for input datasets (default= 1)

COMP Component number to generate tables for (no default)

Also required
matprop.prn extemal file containing material properties.

18

CONS
TheCONSprocessorcomputestheelementconstraintsfor thecurrentdesignvariablevaluesusingthe
elementstressresultants(internalloads). Theprocessorreadsthedatasetsproducedby processorESto
determinethestressresultantsin eachelement.In addition,sectionanddesignvariabledatafor each
componentarereadfrom datasetsCOMPGRPandCOMP DV. This informationis usedto evaluate
elementstressandstabilityconstraints.Theconstraintformulationsvaryfor eachelementandsection
type. Thesectiondelrmitionsaredescribedin detail in section2.3of this document.Two constraintsare
computedfor eachelement.Thefirst is astressconstraint.This constraintusesthemaximumallowable
stresses(or strains)definedin thematprop.prnmaterialfile. Thestabilityconstraintis themaximumof
anumberof localbuckling checksperformedonthesection.For thesechecksanadditionalpieceof
informationis required- acharacteristicbucklinglengthfor theelement.This lengthwill betakenfrom
theExx LENG ngrpdatasetif oneexists. Thisdataset,which is suppliedby theuseranddescribedin
section2.1,hasacharacteristiclengthentryfor eachelementin theparticulargroup. If thisdatasetis
notpresent,the lengthis specifiedby theresetBLEN (seesection2.2). It is permissibleto havecertain
elementgroupsprescribedby Exx LENG ngrpdatasetsandothersby theBLEN reset.

TheCONSprocessorwill alsouseEAL temperaturedatasetsfor usewith temperaturedependent
materialpropertyevaluation.Theprocessorusesthe standardEAL temperaturedefinition datasetsas
describedin section 6.2 of the EAL manual. There are a few differences in usage, however. The first

important difference is that if both NODA TEMP and TEMP Exx datasets are present, only temperatures
from the TEMP Exx dataset will be used and the NODA TEMP data will be ignored. The second

difference involves the treatment of temperature cases within a loadset. The processor will use data
from the temperature case specified by reset TCASE for property evaluation for all load cases in that
load and temperature set. This stems from the philosophy of the optimization runstream design. For
each load set and its associated temperature set (if present), a new stiffness matrix and sensitivities are
calculated. All load cases within a set will use the same stiffness matrix. A different temperature

loading would requires a new stiffness matrix (temperature dependent properties) and should thus be a
separate load and temperature set.

The CONS processor has two groups of output datasets. The first is a series of two column datasets Exx
CON lset ngrp which contain the element constraint values for each element in group '_agrp" for load set
"lset". The first column (I-l) will be the stress constraint for the Jth element in the group. The second
column 0=2) is the local buckling constraint. There will be an Exx CONS dataset for each active design

group. The second table created is the STRS CONS lset 1 dataset. It contains the constraint data for all
the elements in a single column formal In addition, space at the end of the dataset is reserved for any
deflection constraints. The data contained on the STRS CONS dataset is dependent on the reset RHOK.
If RHOK is less than zero, then STRS CONS is simply a concatenation of all the Exx CONS datasets. If
RHOK is positive, then the stress and buckling constraints for each group are each combined into a
single continuous constraint using a K-S function. For RHOK>0, the value of RHOK is then used as the
K-S function parameter rho.

Input Datasets (in library NUIN):
COMP GRP

COMP DV

DEF Exx

GD Exx

NODA TEMP iset

TEMP Exx iset

Design component specification table

Design variable definition table

EAL element def'mition file for element type Exx

EAL group def'mition file for element type Exx

Table of nodal temperatures (optional). See EAL manual section 6.2

Element temperatures (optional). See EAL manual section 6.2

19

Exx LENG ngrp

LSET CASE

Tableof elementcharacteristiclengthsfor local bucklingchecks
(optional)

Tableof numberof load cases in each load set.

Input Datasets (in library NOUT):

ES Exx lset ngrp or SR Exx lset ngrp
Tables of element internal forces (stress resultants) for the elements
being sized in the optimization.

Output Datasets (in library NOUT)

Exx CON lset ngrp Table of constraint values (2 columns) for each element in group
"ngrp". A table is created for each active group

STRS CONS lset 1

Resets
NUIN

NOUT

SET

LLIB

BLEN

RHOK

TSET

TCAS

NO JUNK

Also required

matprop.prn

Table of all the stress and local buckling constraints for each element
(RHOK < 0) or the K-S function constraint values for each group
(RHOK > 0)

Library number for input datasets (default-1)

Library number for stress and constraint datasets (default-1)

Load set number (default- 1)

Library number where Exx LENG ngrp datasets reside (default-l)

Characteristic length used for local buckling calculations if Exx LENG
ngrp dataset is not present. (default-24.)

K-S function parameter (RHOK < 0, K-S function constraint lumping
is not used) (default-- 1)

Temperature set number for property evaluation (default,-1)

Temperature case number for property evaluation (default-1)

Controls printout of warning messages when stress filtering is used
(GLIM<0.0). NOJUNK-YES inhibits warning messages that stress and
constraint datasets are missing for filtered element groups. (default-NO)

external file containing material properties.

20

SECTION 3: CREATING THE OPTIMIZATION MODEL AND

INTERPRETING THE RESULTS

This section of the report describes the steps involved in implementing the optimization procedure
described in sections 1 and 2 for a structural design problem. The changes required to convert an EAL

static analysis model into an optimization model along with the required data tables are detailed. An
example problem, the commonly used ten-bar truss (reference 7), is used to illustrate the required inputs.
The ten-bar truss example and the optimum element sizes are shown on the following page. A listing of
the optimization output for several design cycles along with clarifying annotations is also provided.
Finally, the restart capability of the optimization procedure is explained and strategies for setting and

modifying the control parameters are discussed.

3.1 Developing an Optimization Model: The Ten-Bar Truss Example
Finite Element Model Creation and Modification

The first step in assembling the optimization problem is to create an EAL static analysis input for the
structure. Details for doing this are contained in the EAL reference manual and will not be described

here. It is important to obtain a satisfactory static analysis model prior to attempting the optimization as
the results will only be as good as the finite element analysis. At present, not all of the EAL structural

element types are implemented in the optimization procedure. Currently, only E21, E23, E33, and E43
elements may be designed. It is perfectly acceptable to include any other element type in the f'mite
element model, but they will not be resized. There are certain section types assumed for the various
element types. The E21 beam element, for example, when used as a design group is defined to have a
symmetric, wide flange cross-section. The various sections are described in section 2.3, and the user
must decide which is best for a given problem.

The main difference in model definition between analysis and optimization is the way element groups

are assigned. In a static analysis, elements are assigned to groups by the user for convenience. For an
optimization model, element groups def'me design regions. All elements in an active group will be
associated to the same design variables and will have the same properties. Note, the previous statement

only applies to groups of elements which are being designed. Elements not associated to design
variables will maintain the section properties assigned to them in the EAL model definition. So each

active group represents a design region, and it is possible to have different groups represented by the
same design variables. This will be discussed further in the table definitions, but the important point
here is that the element groups are used to define design regions. The only other potential modification
to the static analysis deck will be when plate elements CE33 or EA3) are used. In order to maintain
maximum flexibility, the optimization routines write directly to the element efile and assume that space
is reserved for sections with either coupled or laminate formats (see page 3.1-22 of the EAL reference

manual). This requires that plate elements being designed reference materials which are created with SA
coupled or laminate input formats so that the proper space is reserved in the ef'de. The section properties
input in the model definition will be overwritten prior to any analysis. The actual data is not important,
but using an improper format will result in an error.

The static analysis problem is contained in the INIT MODL procedure of the optimization runstream. It
should contain all the static analysis data from processors TAB and ELD. In addition, the loading
definitions should also be included. In a normal EAL analysis, the separation of loadings into sets and

cases is generally left to the convenience of the user. The workings of the optimization procedure,
however, make assumptions about the organization of load cases and sets to achieve efficient operation.
The processors assume that the load set and constraint set numbers are the same; i.e., load set 3 will use
constraint set 3. For this reason, all loadings which use the same constraint set should be supplied as

multiple load cases in one load set. The fewest possible constraint sets should be used because new
stiffness matrix sensitivities are required for each constraint set, and this is by far the most time
consuming portion of the optimization. In addition to the model definition, the processors E, TAN, and
SEQ(optional) should also be run in the initial model.

21

L Y _ v

5

6

® 3 ®

®
X

®
4

P

Problem Data

2

P

l
L

l
L = 360 in.

P = 100,000 Ib

E=107 psi

Density = 0.1 Ib/in 3

Minimum Area = 0.1 in2

#,llowable Stress

members 1-8,10:+_25,000 psi

member 9:+75,000 psi

Optimum Mass = 1497.6 Ib

Optimum Bar Areas (in2)

Bar Area Bar
1 7.90 6
2 0.10 7
3 8.10 8
4 3.90 9
5 0.10 10

Area
0.10
5.80
5.51
3.68
0.14

Figure 3.1 Ten-bar Truss Example problem

22

The INIT MODL procedure used for the ten-bar truss example is listed below. Since each element is

being designed separately, each is in its own group. The cross-section listed in the BC entry and the
material data (MATC) will not be used in the optimization, but must be present to prevent errors. Note

that is not necessary to give bar 9 a different material property. The materials will be assigned in the
CaMP GRP dataset.

Finite Element Model Definition Procedure (INIT MODL)

*(INIT MODL) ENDINM
*ECHO 4

$ ENTERING: (INIT MODL)

$ INITIALIZE EAL MODEL
*NOECHO 4

*XQT TAB
START 6 3 4 5 6
HATC: 1 1.+7 .3 .1
BC: 1 5.

3LOC
1 720. 360.
2 720. 0.

3 360. 360.
4 360. 0.
5 0. 360.
60. 0.

CON=I

ZERO i 2:5,6

*XQT ELD
E23

GROUP 1:5 3

GROUP 2:3 1

GROUP 3:6 4

GROUP 4:4 2

GROUP 5:3 4

GROUP 6:1 2

GROUP 7:5 4

GROUP 8:6 3

GROUP 9:3 2

GROUP 10:4 1

*XQT AUS
SYSVEC: APPL FORC : I=2

3=2: -100000.

3=4: -100000.

*XQT E

*XQT TAN

*XQT SEQ $ opt_onaI
$

*ECHO 4

$ EXITING:

*NOECHO 4

$
*RETURN

$ 6 nodes, onty x&y active
$ otuminum properties

$ bar section properties

$ list of joint locations

$ disptacement constraints

$ bar etements - each in own group

$ opptied toads - y forces on jnt 2&4

(INIT MODL) $ INITIALIZE EAL MODEL

23

Optimization Control Parameter Definitions

A number of parameters which control various aspects of the optimization process are defined in the
procedure SET PARA. These parameters control such items as the number of iterations to be performed
and the finite difference step size and are described in sections 2.2 and 3.3. One other item of

importance is the assignment of a file name for optimizer output. EAL has a general output file which is
assigned at execution. This file can be very long and repetitive for a run with many design variables and
iterations. To avoid having to wade through this output to view the optimization results, optimization
cycle data is piped to a separate file. This f'de is assigned in the SET PARA procedure with the TF
OPEN command.

The SET PARA procedure for the ten-bar truss example is listed below. The number of design variables
(NDV) is ten, one for each bar. Also, the number of displacement constraints is one even though there
were none def'med in the problem. At least one must be defined as a place holder, and a dummy
displacement constraint has been created for this problem (see the next section). The number of

iterations to be performed is left to the discretion of the user. There is no convergence evaluation, and
the nan will continue until the major iteration limit is reached. The value of RHOKS is set to - 1. which

specifies there will not be constraint lumping. Since there is only one element in each design group
constraint lumping does not reduce the problem size. The penalty parameter KPEN is set arbitrarily at
6000. Examination of the Lagrange multipliers in the output (section 3.2) indicates a lower value would
have been acceptable, but this value does achieve the optimum solution. The initial move limit fraction
was set fairly high at 0.40 to hopefully speed convergence. This value is reduced as the solution
progresses and the solution will generally proceed faster if a fairly large initial value is used.

Optimization Control Parameter Definition Procedure (SET PARA)
*(SET PAP&) ENDPAR
*ECHO 4

$ ENTERING: (SET PAP&)
$ SET CONTROL PARAMETERS

*NOECHO 4

$
!NDV= 10
!DR=.ZE-7

_ML=.40

!RHOKS = -i.

!KPEN = 6@00.
!MMA30R = i0

!MMINOR = 4

!NLST=I

!NUMD-I

!BLEN=20

*TF OPEN 19

$ assign
!ALIB=6

!SLIB=9

!OTIB=15

IOLIB=15

!LLIB=4

*ECHO 4

$ EXITING:
*NOECHO 4

*RETURN

$ NO.OF INDEPENDENT DESIGN VARIABLES

$ FACTOR FOR INCREMENTING DESIGN VARIABLE

$ INITIAL MOVE LIMIT ON DESIGN VARIABLES

$ CONSTRAINT LUMPING PARAMETER (<0 don't lump)
$ LP PENALTY COEFF.

$ MAXIMUM NUMBER OF MAJOR ITERATIONS

$ MAXIMUM NUMBER OF MINOR ITERATIONS

$ NUMBER OF LOAD SETS (USES DIFF BC OR TEMPERATURES)
$ NUMBER OF DISPLACEMENT CONTRAINTS

$ DEFAULT CHARACTERISTIC BUCKLING LENGTH

'opt_output $ assign file for optimizer output

various work libraries for use by eal - should not need mods
$ A SCRATCH AUS LIBRARY

$ LIB FOR SAVED DESIGN VARIABLES, STRESS RESULTANTS, AND DERIVs
$ OUTPUT LIBRARY FOR INTERMEDIATE STRESS OR DISP. DERIVATIVES

$ LIBRARY FOR CHARACTERISTIC BUCKLING LENGTHS

CSET PARA) $ SET CONTROL PARAMETERS

ENDPAR

24

Optimization Problem Definition Datasets
Data tables which complete the description of the optimization problem are contained in the procedure
DESV DEFN. The COMP GRP and COMP DV tables relate the design variables to the appropriate

element groups and assign section and material types. The first dataset required is the COMP GRP
table. Detailed descriptions of the tables in the DESV DEFN procedure are contained in section 2.1, so

only a summary is given here. The COMP GRP dataset relates groups of elements to design
components. A component is def'med as a group of design variables which together completely describe
a section type. There may be more than one element group related to the same component. Since each
element is being designed independently in this example, each has its own component. Note that
element nine has material 2 assigned to it. The different stress limits for materials 1 and 2 will be seen

later in the matprop.prn file.

The next important dataset is the COMP DV table. This table contains the design variables, the

component each variable is associated with, and the upper and lower design variable bounds. Looking at
the COMP DV dataset, each component has a single design variable whose initial value is 5.0. The
minimum area constraint is specified as 0.1 in column 4 of the table, and the scale factor is 1.0 (column
7). This dataset will be updated with the current design variables as the optimization proceeds. A
current copy of this table is also copied to Library 3 after each iteration so that a complete design history
is stored there. The COMP DV dataset stored in Library 3 is also used for restarts. Upon execution, the

procedure checks Library 3 to see if a COMP DV dataset is present and uses it if it exists.

The E23 LENG ngrp datasets are shown as examples for four groups. These do not affect the results
since there is no local buckling check for rod elements, and they are included only to show the table
format. These tables can exist for certain element groups and be omitted for others. A DEFL DEFI

dataset must be defined for each problem whether displacement constraints are called for or not. In this
case, a displacement limit of 1000 in. was defined for node 6 in the two direction. Since this node is
constrained by a boundary condition, the displacement constraint will have no effect. The final dataset
required is the LSET CASE table. This table defines that there is one load case in the one load set.

Optimization Problem Definition Procedure (DESV DEFN)

*CDESV DFN)
*ECHO 4
$ ENTERING:
$ COMPONENT
*NOECHO 4
$
*XQT AUS

ENDDVD

(DESV DFN)
AND DESIGN VARIABLE DEFINITION

TABLE (NI=4,N]=IO,TYPE=O): COMP GRP
IN TABLE COMP GROUP NI=4, N3=TOTAL NUMBER OF ELEMENT GROUPS

I=l; COMPONENT NUMBER - FOR ASSOCIATION IN COMP DV

I=2; MATERIAL AND SECTION TYPE INDICATOR

I=3; ELEMENT TYPE (EZI,E43,ETC)

I=4; ELEMENT GROUP NUMBER

1=1,2,3,4
3=I: 1 1 E23 1

3=2:2 1 E23 2

3=3:3 1 E23 3

3=4:4 1 E23 4

3=5:5 1 E23 5

3=6:6 1 E23 6

3=7:7 1 EZ3 7

3=8:8 1 E23 8

3=9:9 2 E23 9 $element 9 uses material 2

3=10:10 1 E23 10

25

$
TABLE(NI=8,NJ=IO):COMP DV

$ I=i: Component Number - correspondence with comp grp

$ I=2: Design variabte number in component
$ I=3: Design variabte value

$ I=4: Lower bound on design variabte

$ I=5: Upper bound on design variabte

$ I=6: Constant C0 in linear formutation of vaI=CO+CI*DV

$ I=7: Coefficient C1 in tinear formutation of vaI=CO+CI*DV

$ I=8: Status flag of design variable (controtled by program)
]-- i : I. 1.0 5.0 0.1 42. 0. i. 0.

]= 2 : Z. 1.0 5.0 0.1 42. 0. i. 0.

J= 3 : 3. 1.0 5.0 0.1 42. 0. i. 0.

J= 4 : 4. 1.0 5.0 0.1 42. 0. 1. 0.

J= 5 : 5. 1.0 5.0 0.1 42. 0. I. 0.

]= 6 : 6. 1.0 5.0 0.1 42. 0. i. 0.

J= 7 : 7. 1.0 5.0 0.1 4Z. 0. i. 0.

J= 8 : 8. 1.0 5.0 0.1 42. 0. 1. 0.

3= 9 : 9. 1.0 5.0 0.1 42. 0. i. 0.

J= 10: 10. 1.0 5.0 0.1 42. 0. I. 0.
$
*XQT DCU

$ COPY COMP DV FROM LIB 3 IF IT EXISTS (RESTART)

COPY 3 1 COMP DV 1 1 $ get COMP DV from LIB 3 if one exists
*XQT AUS
OUTLIB="LLIB"

TABLE(NI=I,N]=I): EZ3 LENG 1
]=I : 24.

TABLE(NI=I,N3=I): E23 LENG 2
]=I : 24.

TABLE(NI=I,N]=I): E23 LENG 7
3=1 : 24.

TABLE(NI=I,N3=I): E23 LENG 9
3=I : 24.

OUTLIB=I

TABLE(NI=3,N]="NUMD"):DEFL DEFI

3=i: 6. 2. 1000. $ dumy constraint

TABLE(NI=2,N3="NLST",TYPE=O): LSET CASE
I=1 SNUMBER OF LOAD CASES IN SET 3

3=1: 1 $LOADSET i HAS 1LOADCASE
$
*ECHO 4

$ EXITING: (DESV DFN) $ COMPONENT AND DESIGN VARIABLE DEFINITION
*NOECHO 4

$
*RETURN

* ENDDVD

26

Materials Data File (matprop.prn)
The material data file used for the ten-bar truss problem is shown below. Note that material 2 used for
bar 9 has the higher allowable stress. For the bar element, the Poisson's ratio and shear properties have
no effect and may be omitted. The matprop.prn file must be in the directory where the optimization is

being run.

1 bor test

60.0 10000000.
.31 .10
0. 25000.
10000. 0.
0. 0.
0. 0.
0. 0.
0. 0.
•0000048 .0000048

2 bar test
60.0 10000000.
.31 .10
0. 75000.

30000• 0.
0. 0.
0. 0.
0. 0.
0. 0°
.0000048 .0000048

problem properties 25KSI strength
10000000. 3850000. .31
25000. 0. 0.

O. O. O.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.

problem properties 75KSI strength
10000000. 3850000.
75000. 0.

0. 0.
0 0.
0 O.
0 O.
0 O.
0 O.
0 O.

.31
0.
0.
0.
0.
0.
0.
0.
0.

27

3.2 Output from the Linear Programming Processor LIP4
After assembling the optimization problem and executing EAL, the next step is interpreting the results.
The results of greatest interest will be in a file containing the output from the LIP4 processor - the linear
programming results for each iteration. The following listing is the output from the first several

iterations from the ten-bar truss problem solution. Additional comments are denoted by bold type.

REG HAJO= 1
REG MINO= 0
REG NEWP= 0.1087468399495650E+05
REG ML = 0.4000000000000000E+00
EXIT AUS 4.890 2198

LPEN= 1
KPEN 0.60000000E+04

5032

First major iteration

No minor iterations performed

Value of computed penalty
40%move limits used
981 2233

Penatty coefficient-6000
LIP4 330.06

MINOS ERROR FLAG = 0
NEW OBJECTIVE FUNCTION = 1843.785900431802

CHANGE FROM LP = -254.4478957429461
PENALTIES USED

OBJECTIVE = 0.0000000000000000E+00

COBJ COEFFICIENT= 0.0000000000000000E+00)

DataSpace= 1000000, Date/Time= 951024 183358

Objective after LP cycle
Change in Objective

No penalty required since oll
constraints OK after LP

The following section shows the values of the design variabtes before
and after the LP cycle. In general, the bounds are a combination of
move limits and variable bounds defined in COMP DV.

DESIGN VARIABLES

DV # LOWER BOUND INIT DV DV UPPER BOUND BOUND
1 0.30000E+01 0. 50000E+01 0. 70000E+01 0. 70000E+01 UPPR

2 0. 30000E+01 0. 50000E+01 0.30000E+01 0. 70000E+01 LOWR
3 0.3_E+el 0.5_E+el 0.7_OE+e1 0.7_00E+el UPPR
4 0.3_(_E-_l 0. 50000E+01 0.30000E+@I 0.70000E+01 LOWR
5 0.30000E+01 0.50000E+01 0. 30000E+01 0.70000E+01 LOWR
6 0.3_E+@l 0.50000E+01 0. 30000E+01 0.7_(_E+_l LOWR
7 0.30_E+01 0.5_E+el 0.58824E+el 0.7_(_E+01 FREE
8 0.3_E+01 0. 50000E+01 0.59482E+01 0.70000E+01 FREE
9 0.30000E+01 0. 50000E+01 0. 30000E+01 0. 70000E+01 LOWR

10 0. 30000E+01 0. 50000E+01 0. 30000E+01 0. 70000E+01 LOWR

This section shows the value of the constraints before and after the LP

cycle. The constraints are ordered in pairs, the first being the stress

and the second being local buckling. The order of the pairs will be by
group appearance in the CONP GRP dataset. If rhoks<O, constraint values
will be printed for each element. If rhoks>O, a single pair of K-S
function constraints will be printed for each group. After all stress
and buckling constraints are printed, displacement constraints are
listed C#21 in this example). The buckling constraints are all -1 for

the rod elements in this example. The Lagrange multiplier gives the
relative importance of each constraint and shoutd be used to verify that
an appropriate value of KPEN was used.

CONSTRAINTS

CON # SIGCT INIT CON CON LAGRANGE MULT

1 10 0.56292E+@0 -.80000E-01 0.89866E-13

2 10 -.10000E_I -.10000E+01 0.00000E+00
3 10 -.679_E+eO -.54877E+00 0.00000E+00

4 10 -.10000E+01 -.10000E+01 0.00000E+00
5 10 0.63708E+00 -.34694E-16 -.37125E+03

28

6 10

7 10

8 10

9 10

10 10
ii 10

12 10

13 10

14 10

15 10

16 10

17 10

18 10
19 10
20 10
21 10

EXIT LIP4
REG _JO=
REG HINO=-

- 10000E+01

- 52100E+00

- 10000E+01

- 71608E+00

- 10000E+01

- 67900E+00
- 10000E+01

0 18381E+00

- 10000E+01

0 78932E-01
- 10000E+01

- 77420E+00

- 10000E+01
- 54604E+00
- 10000E+01
- 10000E+01

4.910

1

1

2204

REG NEWP= 0.3802952301922171E+04
REG ML = 0.4000000000000000E+00
EXIT AUS 5.400 2544
LPEN= 1

KPEN 0.60000000E+04

-.10000E+01
-.33123E+00
-.10000E+01
-.61843E+00
-.10000E+01
-.54877E+00
-.10000E+01
0.44235E-16
- 10000E+01
- 15079E+00
- 10000E+01
- 68474E+00
- 10000E+01
- 36186E+00
- 10000E+01
- 10000E+01

5083 982

0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
-.45097E+03
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00

0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00

2257

Still first major iteration

This is a minor (approx sens. calc)

5798 1124 2547

LIP4 330.06 DataSpace= 1000000, Dote/Time= 951024 183358
MINOS ERROR FLAG = 0
NEW OB3ECTIVE FUNCTION = 1628.556803223251
CHANGE FROM LP = -215.2290937065959

PENALTIES USED

OBJECTIVE = 0.0000000000000000E+00

(OB3 COEFFICIENT= 0.0000000000000000E+00)

DESIGN VARIABLES
DV # LOWER BOUND INIT DV DV UPPER BOUND

1 0.42000E+01 0.70000E+01 0.98000E+01 0.98000E+01
2 0.18000E+01 0.30000E+01 0.18000E+01 0.42000E+01
3 0.42000E+01 0.70000E+01 0.62301E+01 0.98000E+01
4 0.18000E+01 0.30000E+01 0.22665E+01 0.42000E+01
5 0.18000E+01 0.30000E+01 0.18000E+01 0.42000E+01
6 0.18000E+01 0.30000E+01 0.18000E+01 0.42000E+01
7 0.35294E+01 0.58824E+01 0.40582E+01 0.82353E+01
8 0.35689E+01 0.59482E+01 0.75737E+81 0.83275E+01
9 0.18000E+01 0.30000E+01 0.18000E+01 0.42000E+01

10 0.18000E+01 0.30000E+01 0.18000E+01 0.42000E+01

CONSTRAINTS
CON # SIGCT INIT CON CON

1 10 0.95823E-01 -.70690E-16
2 10 -.10000E+01 -.10000E+01
3 10 -.46004E+00 -.31442E+00
4 10 -.10000E+01 -.10000E+01
5 10 0.18989E+00 -.71557E-16
6 10 -.10000E+01 -.10000E+01
7 10 -.20663E+00 0.41633E-16
8 10 -.10000E+01 -.10000E+01
9 10 -.56979E+00 -.18904E+00

10 10 -.10000E+01 -.10000E+01

LAGRANGE MULT
-.27367E+03
0.00000E+00
0.00000E+00

0.00000E+00
-.60900E+03
0.00000E+00
-.18104E+03
0.00000E+00
0.00000E+00
0.00000E+00

BOUND
UPPR
LOWR
FREE
FREE
LOWR

LOWR
FREE
FREE
LOWR
LOWR

29

ii 10 -.46004E+00 -.31442E+00 0.00000E+00

12 10 -.10000E+01 -.10000E+01 0.00000E+00

13 10 0.40813E-01 0.i1015E- 15 -.59284E+03

14 10 -.10000E+01 -.10000E+01 0.00000E+00

15 10 -.12726E+00 -.98409E-02 0.35194E- 12

16 10 -.10000£+01 -.10000E+01 0.00000E+00

17 10 -.62600E+00 -.48499E+00 0.00000E+00

18 10 -. 10000E+01 -. 10000E+01 0.00000E+00
19 10 -. 23638E+00 -. 31465E-01 0.00000E+00
20 10 -. 10000E+01 -. 10000E+01 0.00000E+00
21 10 -. 10000E+01 -. 10000E+01 0.00000E+00

EXIT LIP4 5.430 2550 5846 1125 2568

After this LP execution a _rning is printed that the penalty value
increased after the last minor iteration indicating the approximate
derivatives may be of poor quality. Another possibility is that the
value of the penalty parameter KPEN is too large. KPEN is set at 6088
and the largest Lagrange multiplier is about 600. These results will be

discarded and a new, full sensitivity calculation (major iteration) will
be performed.

$ WARNING!!! PENALTY INCREASED DURING LAST OPTIMIZATION CYCLE

$ THIS CYCLE WILL BE DISCARDED AND THE DESIGN VARIABLES RESET

REG OLDP= 0.3802952301922171E+04
REG NEWP= 0.6420127158036401E+04
REG MA30= 2
REG MINO= 0
REG NEWP= 0.3802952301922171E+04

REG ML = 0.4000000000000000E+00

EXIT AUS 9.250 4753 11212 2115 4951
LPEN= 1
KPEN 0.60000000E+04

LIP4 330.06 DotaSpace= 1000000, Date/Time= 951024 183402
MINOS ERROR FLAG = 0

NEW OBJECTIVE FUNCTION = 1636.033455000091
CHANGE FROM LP = -207.7524419297553

PENALTIES USED
OB3ECTIVE = 0.0000000000000000E+00

(OB3 COEFFICIENT= 0.0000000000000000E+00)

$ penalty from previous iteration
$ penalty from latest iteration
$ Now on second major iteration

note that the initial design variables are from last acceptable cycle

DESIGN VARIABLES

DV # LOWER BOUND INIT DV DV UPPER BOUND BOUND

1 0.42000E+01 0.70000E+01 0.63365E+01 0.98000E+01 FREE
2 0.18000E+01 0.30000E+01 0.18000E+01 0.42000E+01 LOWR

3 0.42000E+01 0.70000E+01 0.92919E+01 0.98000E+01 FREE
4 0.18000E+01 0.30000E+01 0.18986E+01 0.42000E+01 FREE
5 0.18000E+01 0. 30000E+01 0.18000E+01 0.42000E+01 LOWR
6 0.18000E+01 0. 30000E+01 0.18000E+01 0.42000E+01 LOWR
7 0.35294E+01 0.58824E+01 0.80124E+01 0.82353E+01 FREE
8 0.35689E+01 0.59482E+01 0.35689E+01 0.83275E+01 LOWR
9 0.18000E+01 0.30000E+01 0.18000E+01 0.42000E+01 LOWR

10 0.18000E+01 0.30000E+01 0.25416E+01 0.42000E+01 FREE

30

CONSTRAINTS
CON # SIGCT INIT CON CON LAGRANGE MULT

1 10 0.95823E-01 0.42501E-16 -.13022E+03

2 10 -.10000E+01 -.10000E+01 0.00000E+00

3 10 -.46004E+00 -.15941E+00 0.00000E+00

4 10 -.10000E+01 -.10000E+01 0.00000E+00

5 10 0.18989E+00 -.30791E-16 -.31153E+03
6 10 -.10000E+01 -.10000E+01 0.00000E+00
7 10 -.20663E+00 -.24286E-16 -.93839E+02
8 10 -.10000E+01 -.10000E+01 0.00000E+00
9 10 -.56979E+00 -.77899E+@0 0.00000E+00

10 10 -.10000E+01 -.10000E+01 0.00000E+00

Ii 10 -.46004E+00 -.15941E+00 0.00000E+00

12 10 -.10000E+01 -.10000E+01 0.00000E+00

13 10 0.40813E-01 -.13010E-17 -.48722E+03
14 10 -.10000E+01 -.10000E+01 0.00000E+00

15 10 -.12726E+00 -.11050E+00 0.00000E+00
16 10 -.10000E+01 -.10000E+01 0.00000E+00
17 10 -.62600E+00 -.51630E+00 0.00000E+00
18 10 -.10000E+01 -.10000E+01 0.00000E+00
19 10 -.23638E+00 0.00000E+00 -.28459E+03
20 10 -.10000E+01 -.10000E+01 0.00000E+00
21 10 -.10000E+01 -.10000E+01 0.00000E+00

EXIT LIP4 9.260 4759 11260 2116 4972

3.3 Restarts and Parameter Settings
This section describes how to use the simple restart procedure from the latest design and also provides

insight on setting the various optimization parameters. The ability to restart the optimization procedure
from any design step is an important feature. Each intermediate design is stored in Library 3 (the L03
file) during program execution. During the DESV DEFN procedure, there is a command to copy any
active COMP DV dataset from Library 3. The design variable values from this table, if present, will be
used. An intermediate design variable set may be selected by enabling the appropriate COMP DV
dataset using EAL processor DCU commands. A listing of the table of contents in Library 3 will show
each intermediate COMP DV dataset. The procedure for restarting the optimization from the last design

cycle is: 1) make necessary modifications to any of the optimization parameters in SET PARA, 2) delete
all previous EAL libraries except Library 3, and 3) resubmit the EAL optimization runstream.

Several of the optimization control parameters, initialized in the procedure SET PARA, require
somewhat arbitrary definition by the user. In this section, some strategies for selecting values which will
speed execution time and provide satisfactory solutions will be discussed. Proper settings for these
parameters are problem dependent. It is up to the user to monitor the solution progress and modify the
various parameters as required. The following discussion is meant to aid in that process.

MMAJOR It is suggested that the number of major iterations be limited to two or three for the first

pass at the optimization. This will give the user the opportunity to evaluate the solution progress and the
various parameter settings. Since there is no convergence criterion, the procedure will continue until the
major iteration limit is reached. It is suggested that a number of major iterations be selected for
subsequent restarts with computer time requirements considered.

MMINOR Experience has shown that minor iterations are most valuable for large problems where a
full sensitivity calculation is very expensive. They also seem to most helpful during the initial iterations
when constraints may be far from their boundaries and the quality of the sensitivity derivatives is not as
critical. Since minor iterations are relatively cheap in terms of computer time, it is suggested that a

relatively large number of minor iterations be allowed in the early iterations. Since the minor iteration
cycle is stopped when the penalized objective function increases, there is little danger of the minor

31

iterations leading to bad solutions. The user should monitor the output, and if none of the minor
iteration cycles is accepted then the MMINOR parameter should be set to zero.

ML The selection of the move limit factor is somewhat dependent on how close the current design is to
the f'mal solution. If the design is far away from the final design, than large move limits and
approximate sensitivity calculations can speed the process immensely. As the final design is
approached, large move limits can result in oscillation. Methodology is in place to reduce the move
limit as the penalized objective function increases. The execution time penalty for each move limit
reduction is an execution of the linear programming processor and a static analysis. This time is
generally small compared to a full sensitivity calculation, so it is recommended that relatively large
move limits (0.25-0.50) be used for initial executions. For restarts, it is generally a good idea to look at
the move limits and solution behavior of the previous iteration.

RI-IOKS The fu'st consideration in setting the rho parameter for the K-S function is deciding if the
constraints should be lumped or not. For small problems, such as the ten-bar truss, there is really no
reason to lump constraints, so a negative value should be used for RHOKS. For large problems,
memory limitations encountered in the LIP4 processor may necessitate constraint lumping, and
constraint lumping can ease result interpretation for many mid-size problems. Typical values of
RHOKS when constraint lumping is used range from 10 to 300, and a value of 50 has generally provided
good results.

DR The finite difference step size chosen can have an affect on the quality of the sensitivities. It is
suggested that the user try several values of DR for a few iterations to see if this affects the results.

Generally acceptable results have been obtained for DR in the range of 10 -4 to 10 -7 .

KPEN The penalty parameter KPEN is probably the most difficult parameter to select prior to an
optimization run since acceptable values are problem dependent. Most importantly, if the value of
KPEN is too small the constraints will not be satisfied. The best way to choose a value of KPEN is to
examine the Lagrange multipliers from the linear programming output for an iteration when all the f'mal

linearized constraints are satisfied. A value of KPEN that is a few times larger than the largest absolute
value of the Lagrange multipliers has been found to be satisfactory. If there are violated constraints, it is

important to observe the progress of the optimization and make sure KPEN is large enough so that the
values of the violated constraints are reduced during each iteration. The danger in setting an arbitrarily
large value of KPEN is that progress to the final solution will be slowed.

32

CONCLUDING REMARKS

This report has presented a structural optimization procedure developed for use with the Engineering
Analysis Language (EAL) f'mite element analysis code. The procedure is written primarily in the EAL
command language and uses three external FORTRAN processors. The first section of the report
describes the methodology and flow of the procedure, and the second section describes the optimization

problem inputs and section models. The final section uses the ten-bar truss problem to further describe
the procedures' input and outputs. The appendix contains a listing, with comments, of the optimization

procedure.

The procedure described in this report has been used successfully on a number of large and small design
and optimization projects at the NASA Langley Research Center. An emphasis was placed on
producing efficient methods and implementations for use with large optimization and finite element
models. The use of partial stiffness matrices in the sensitivity calculations and the approximate updates
of constraint sensitivities can greatly reduce computer time and storage requirements. The performance

improvements attained using the approximate sensitivity updates are described in reference 3 for
optimization problems of various sizes. In addition, the capability to include built-up structural sections
with realistic stiffnesses and constraints adds to the procedure's utility as an aircraft design tool. The

stiffnesses and constraints for the built-up sections are computed in external processors which are
written in FORTRAN and are linked with the EAL analysis code. The use of FORTRAN external

processors allows for the writing of complex constraint and stiffness formulations and makes the
addition of section geometries relatively straightforward.

33

REFERENCES

1. Whetstone, W. D.: EISI-EAL Engineering Analysis Reference Manual. Engineering Information
Systems, Inc., July 1983.

2. Murtagh, Bruce A. and Saunders, Michael A.: MINOS 5.4 User's Guide (preliminary). Technical
Report SOL 83-20R, Systems Optimization Laboratory, Stanford University. Stanford, CA,
1983 (revised 1993).

3. Scotti, Steven J.: Structural Design Using Equilibrium Programming Formulations. NASA TM-
110175, June 1995.

. Camarda, Charles J. and Adelman, Howard M.: Static and Dynamic Structural-Sensitivity Derivative
Calculations in the Finite-Element-Based Engineering Analysis Language (EAL) System.
NASA TM-85734, 1984.

5. Zhang, Nae-Heon, and Lasdon; "An Improved Successive Linear Programming Algorithm",
Management Science, Vol. 31. No. 10, October 1985, pp. 1312-1331.

6. Walsh, Joanne L.: Application of Mathematical Optimization Procedures to a Structural Model of a
Large Finite-Element Wing. NASA TM-87597, 1986.

7. Haftka, R. T., Zafer, G., and Kamat, M. P.: Elements of Structural Optimization. Kluwer Academic
Publishers, Boston, MA, 1990.

8. Giles, Gary L. and Haftka, Raphael T.: SPAR Data Handling Utilities. NASA TM-78701, 1978.

9. Cunningham, Sally W.: SPAR Data Set Contents. NASA TM-83181, 1981.

34

APPENDIX: Listing of Optimization Runstream

$EAL STRUCTURAL OPTIMIZATION RUNSTREAM
*ONLINE - 0
*NOECHO 1,2,3,4
*XQT U1
$

$

*(INIT MODL) ENDINM
*ECHO 4

$ ENTERING: (INIT MODL)
$ INITIALIZE EAL MODEL
*NOECHO 4

*XQT TAB $ ten bar truss
START 6 3 4 5 6
MATC: 1 1.+7.3.1
BC: 1 5.
JLOC
1 720. 360.
2 720. 0.
3 360. 360.
4360.0.
50. 360.
60.0.
CON--1
ZERO 1 2:5,6

*XQT ELD
E23
GROUP 1:5 3

GROUP 2:3 1
GROUP 3:6 4
GROUP 4:4 2
GROUP 5:3 4
GROUP 6:1 2
GROUP 7:5 4
GROUP 8:6 3
GROUP 9:3 2
GROUP 10:4 1

*XQT AUS
SYSVEC: APPL FORC : 1-2

J-2: - 100000.
J-4: - 100000.

*XQT E
*XQT TAN
$
*ECHO 4

$ EXITING: (INIT MODL) $ INITIALIZE EAL MODEL
*NOECHO 4

$
*RETURN
* ENDINM

$

$
*(SET PAR.A) ENDPAR
*ECHO 4

$ ENTERING: (SET PAR.A)

35

$SETCONTROLPARAMETERS
*NOECHO4
$
_NDV= 10
!DR-.1E-7
!MI__.30

!RHOKS - -1.
!KPEN - 500.

$ NO.OF INDEPENDENT DESIGN VARIABLES
$ FACTOR FOR INCREMENTING DESIGN VARIABLE

$ MOVE LIMIT ON DESIGN VARIABLES

$ CONSTRAINT LUMPING PARAMETER (<0 don't lump)
$ LP PENALTY COEFF.

!MMAJOR -12 $ MAXIMUM NUMBER OF MAJOR ITERATIONS
IMMINOR - 2 $ MAXIMUM NUMBER OF MINOR ITERATIONS

!NLST-1 $ NUMBER OF LOAD SETS (USES DIFF BC OR TEMPERATURES)
!NUMD-1 $ NUMBER OF DISPLACEMENT CONTRAINTS

!BLEN-20. $ DEFAULT CHARACTERISTIC BUCKLING LENGTH USED BY CONS
!GLIM--.5

*TF OPEN 19 'optimizationresults
$ assign various work libraries for use by eal - should not need to be modified
!ALIB-6 $ A SCRATCH AUS LIBRARY

$ LIB FOR SAVED DESIGN VARIABLES, STRESS RESULTANTS, AND DERIVATIVE
$ OUTPUT LIBRARY FOR INTERMEDIATE STRESS OR DISP. DERIVATIVES

!SLIB-9
!OTIB-15
[OLIB-15
!LLIB-4
*ECHO 4

$ LIBRARY FOR CHARACTERISTIC BUCKLING LENGTHS

$ EXITING: (SET PARA) $ SET CONTROL PARAMETERS
*NOECHO 4

$
*RETURN
* ENDPAR
$

.. *

$
*(DESV DFN) ENDDVD
*ECHO 4

$ ENTERING: (DESV DFN)
$ COMPONENT AND DESIGN VARIABLE DEFINITION
*NOECHO 4
$
*XQT AUS
$
$$ $5 DESIGN VARIABLE DEFINITION

TABLE (NI-4,NJ-10,TYPE,-0): COMP GRP
$ IN TABLE COMP GROUP NI-4, NJ-TOTAL NUMBER OF ELEMENT GROUPS
$ I-1; COMPONENT NUMBER - FOR ASSOCIATION IN COMP DV
$ I-2; MATERIAL AND SECTION TYPE INDICATOR

$ I-3; ELEMENT TYPE (E21,E43,ETC)
$ 1-4; ELEMENT GROUP NUMBER
1-1,2,3,4
J-I:l IE231
J-2:2 1 E23 2
J-3:3 1 E23 3
J-4:4 1 E23 4
J-5:5 1 E23 5
J-6:6 1 E23 6
J-7:7 1 E23 7

J-8:8 1 E23 8
J-9:9 2 E23 9
J-10:10 1 E23 10
$
TABLE(NI-8,NJ- 10):COMP DV

36

$ I-1: Component Number - correspondence with comp grp
$ I-2: Design variable number in component
$ I-3: Design variable value
$ I-4: Lower bound on design variable

$ I-5: Upper bound on design variable
$1-,6: Constant CO in linear formulation of val-C0+C I*DV
$ I-7: Coefficient C1 in linear formulation of vaI-C0+CI*DV

$ I-8: Status flag of design variable (controlled by program)
J- 1 : I. 1.0 5.0 0.1 42. 0. 1. 0.
J- 2: 2. 1.0 5.0 0.1 42. 0. 1. 0.
J- 3:3.1.0 5.0 0.1 42. 0. 1. 0.
J- 4:4.1.0 5.0 0.1 42. 0. 1. 0.
J- 5:5.1.0 5.0 0.1 42. 0. 1. 0.
J- 6:6.1.0 5.0 0.1 42. 0. 1. 0.
J- 7:7.1.0 5.0 0.1 42. 0. 1. 0.
J- 8:8.1.0 5.0 0.1 42. 0. 1. 0.
J- 9 : 9. 1.0 5.0 0.1 42. 0. 1. 0.
J- 10: 10. 1.0 5.0 0.1 42. 0. 1. 0.

$
*XQT DCU
COPY 3 1 COMP DV 1 1 $ get COMP DV from LIB 3 if one exists

*XQT AUS
OUTLIB-"LLIB"
TABLE(NI-1,NJ-1): E23 LENG 1

J-1:24.
TABLE(NI-1,NJ-1): E23 LENG 2

J-1:24.

TABLE(NI-1,NJ-1): E23 LENG 3
J-1:24.

TABLE(NI-1,NJ-1): E23 LENG 4
J-1:24.

TABLE(NI-1,NJ-1): E23 LENG 5
J-1 : 24.

OUTLIB-1

TABLE(NI-3,NJ-' qq-I_IMD"):DEFL DEFI
J-l: 6. 2. 100.

TABLE(NI-2,NJ-"NLST",TYPE-0): LSET CASE
I-1: J-l: 1

$
*ECHO 4
$ EXITING: (DESV DFN) $ COMPONENT AND DESIGN VARIABLE DEFINITION
*NOECHO 4

$
*RETURN
* ENDDVD
$

..

$
*(DRIV OPT) ENDOPT
*ECHO 4

$ ENTERING: (DRIV OPT)
$ DRIVER PROGRAM TO OPTIMIZE A STRUCTURE SUBJECT TO STRESS AND DISP CONSTRAINTS
*NOECHO 4
$
*DCALIXINIT MODL) $ INITIALIZE EAL MODEL

*DCALL(SET PARA) $ SET CONTROL PARAMETERS
*DCALL(DESV DFN) $ DEFINE COMPONENTS AND D.V.'S
*DCALL(ADS INIT) $ INITIALIZE DATA SET REQUIRED BY ADS

37

$ initialize counters
!EXACT- 1
!MAJORITER - 0
!MINORITER = 0
!FIRST- 1
!ICT - 0

$
*LABEL BMAJORITER $ start of major iteration loop
*DCALL(CLEA NL01) $ CLEAR UP LIBRARIES
!NNST - 1 $ NOTE: NLST = NUMBER OF LOAD SETS
*LABEL BLOADSET

*IF('_qNST '' GT '_'LST"): *GO TO ELOADSET $ LOOP OVER LOAD SETS
!LCAS-DS, 1,'_"NST", I(1,LSET,CASE,MASK,MASK)
!OLIB- 1

*IF("GLIM" GE 0.0): *GO TO EC-COPY

*XQT DCO
COPY "SLIB" 1 GACT E21
COPY "SLIB" 1 GACT E23
COPY "SLIB" 1 GACT E31
COPY "SLIB" 1 GACT E32
COPY "SLIB" I GACT E33
COPY "SLIB" 1 (]ACT E41
COPY "SLIB" 1 GACT E42
COPY "SLIB" 1 GACT E43
COPY "SLIB" 1 GACT E44

*LABEL EGCOPY

* DCALL(CALC STAT) $ PERFORM STATIC ANALYSIS
* XQT CONS $ PROCESSOR TO EVALUATE CONSTRAINTS, UNPERTURBED DESIGN

RESET RHOK - '_I-IOKS" SET-"NNST" NOUT="OLIB" BLEN-"BLEN" LLIB-"LLIB"
RESET NOJUNK-YES

!STATUS- 1

* DCALL(DISP CONS) $ COMPLrrE DISPLACEMENT CONSTRAINT
!NNST - NNST + 1

* GO TO BLOADSET $ repeat for each load set
*LABEL ELOADSET
!STATUS - 1

*DCALL(ADS CONS) $ WRITE OUT CONSTRAINTS IN ADS FORMAT
$
$ CALC PENALTY HERE, IF MINORITER ZERO, GO ON TO EXACT SENS
$ IF MINORITER NOT ZERO AND PENALTY REDUCED DO MINOR,
$ IF NOT RESET X ADS AND DOCALC STAT AND EXACT SENS
*DCALL(CALC PEN)

$ if first time thin or number of minor iters exceeds limit don't update cons
*IF("FIRST" NE 0):*GO TO NOUP

$ if penalty function has decreased than do another approximate update
*IF('_rEWPEN '' LT "OLDPEN"):*GO TO DOUP

*TF STANDARD OUTPUT-19 $redirect optimizer output
*ECHO 4

$ WARNING! !! PENALTY INCREASED DURING LAST OPTIMIZATION CYCLE
$ THIS CYCLE WILL BE DISCARDED AND THE DESIGN VARIABLES RESET
*NOECHO 4

!OLDPEN: !NEWPEN
*TI e STANDARD OUTPUT-6
!BADPEN - NEWPEN
!NEWPEN - OLDPEN

$
*IF("EXACT" EQ 0):*GOTO SKIP
$ IF LAST COMPUTATION WAS EXACT AND PENALTY RISING

38

!ML - ABS(ML)/2.0 $ REDUCE MOVE LIMITS
$ RESET DESIGN VARIABLES AND REPEAT OPTIMIZATION

*XQT AUS
DEFINE X - "SLIB" X ADS 1 1

TABLE,U(TYPE--1): 1 X ADS 1 1
TRANSFER(SOURCE - X, OPER-XSUM)

*XQT AUS
DEFINE F - "SLIB" F ADS 1 1

TABLE,U(TYPE--1): 1 FADS 1 1
TRANSFER(SOURCE - F, OPER-XSUM)

*XQT AUS
DEFINE G - "SLIB" G ADS 1 1

TABLE,U(TYPF_.--1): 1 G ADS 1 1
TRANSFER(SOURCE - G, OPER-XSUM)

* GO TO DOOPT $ REPEAT OPTIMIZATION WITH REDUCED MOVE LIMITS

$
*LABEL SKIP
$ THIS LEAVES THE CASE WHERE PENALTY ROSE AFTER APPROXIMATE ANALYSIS
$ RESET DESIGN VARIABLES AND RECALC STATIC

*XQT AUS
DEFINE X ,- "SLIB" X ADS 1 1

TABLE,U(TYPE--I): 1 XADS 1 1
TRANSFER(SOURCE - X, OPER-XSUM)

*DCAI__(CLEA NL01) $ CLEAR LIP LIBRARIES
!NNST - 1 $ NOTE: NLST - NUMBER OF LOAD SETS

*LABEL B 1LOADSET
*IF("NNST" GT '2qLST'): *GO TO E1LOADSET $ LOOP OVER LOAD SETS

!LCAS-DS, 1,' _q'NST", 1(1 ,LSET,CASE,MAS K,MASK)
!OLIB - 1

* DCALL(CALC STAT) $ PERFORM STATIC ANALYSIS
* XQT CONS $ PROCESSOR TO EVALUATE CONSTRAINTS, UNPERTURBED DESIGN

RESET RHOK - 'a_/-IOKS" SET-"NNST" NOUT-"OLIB" BLEN-'q3LEN" LLIB-"LLIB"
RESET NOJUNK-YES

ISTATUS- 1
* DCALL(DISP CONS) $ COMPUTE DISPLACEMENT CONSTRAINT
!NNST - NNST + 1
*GO TO B 1LOADSET
*LABEL E1 LOADSET
!STATUS- 1

*DCALL(ADS CONS) $ WRITE OUT CONSTRAINTS IN ADS FORMAT
*GOTO NOUP
$
*LABEL DOUP
$ UPDATE CONSTRAINT GRADIENTS
*IF("MINORITER" GE "MMINOR"): *GOTO NOUP $ UNLESS EQUAL MAX NUMBER
*DCALL(UPDA GRAD)
$
!MINOR/TER - MINORITER + 1

*GOTO DOOPT
$
$ EXACT CONSTRAINT GRADIENTS
$
*LABEL NOUP
!NNST - 1 $ NOTE: NLST - NUMBER OF LOAD SETS
*LABEL BLADSET

*IF("NNST" GT "NLST"): *GO TO ELADSET $ LOOP OVER LOAD SETS
!LCAS-DS,I,"NNST",I(1,LSET,CASE,MASK,MASK) $ number of cases in set
!OLIB-- 1

39

* IF("GLIM" LT 0.0):*DCALL(SENS FILT)
* DCALL(CALC SENS) $ CALCULATE SENSITIVITIES

!STATUS - 2

* DCALL(DISP CONS) $ ADD DISPLACEMENT CONSTRAINTS TO DATA SETS
!NNST - NNST + 1

*GO TO BLADSET
*LABEL ELADSET
!STATUS - 2

* DCALL(ADS CONS) $ WRITE OUT EXACT CONSTRAINT GRADIENTS IN ADS FORMAT
!MAJORITER - MAJORITER + 1
!MINORITER - 0
!EXACT- 1
$
*LABEL DOOPT

*XQT AUS
DEFINE X- 1 XADS 1 1

TABLE,U(TYPE--1): "SLIB" X ADS 1 1
TRANSFER(SOURCE_X,OPER-XSUM)

DEFINE F- 1 FADS 1 1

TABLE,U(TYPE--1): "SLIB" F ADS 1 1
TRANSFER(SOURCE-F,OPER-XSUM)

DEFINE G- 1 G ADS 1 1

TABLE,U(TYPE--1): "SLIB" GADS 1 1
TRANSFER(SOURCE-G,OPER-XSUM)

!OLD - DS,I,I,1 (1,F,ADS,I,1)
$ ML stuff
!ICT - ICT + 1

$
*XQT DCU
*IF('q_IRST" NE 0): COPY 1 3 COMP DV 1 1 $COPY DV'S TO LIB 3 TO SAVE CYCLE DATA
$
*DCALL(CALC ML) $ calculate move limits for this LP execution

*TF STANDARD OUTPUT-19 $redirect optimizer output
!MAJORITER
!MINOR/TER
!NEWPEN

!ML

*XQT LIP4 $ CALL LINEAR PROGRAMMING PROC.
RESET LPEN - 1 KPEN-"KPEN" $CUTO - 0.01

*XQT DCU $ TO GET OUT OF LIP

*TF STANDARD OUTPUT-6 $redirect output back to eal file
!OLDPEN-NEWPEN

*XQT AUS
OUTLIB - "ALIB"
INLIB - "ALIB"
DEFINE GLIN- 1 G ADS 1 1

TABLE,U(TYPE--1): "SLIB" GLIN ADS 1 1
TRANSFER(SOURCE- GL/N, OPER- XSUM)

!FIRST - 0 $ flag indicates at least one cycle is complete
*XQT AUS
oI/rLIB - "ALIB": INLIB - "ALIB"
DEFINE G - 1 GADS 1 1

GMAX - MMI(G) $ fred max constraint value
!GMAX - DS,I,I,I("ALIB" GMAX AUS MASK MASK)$$$$

tGMAX
$
*XQT DCU
COPY 1 3 COMP DV 1 1 $COPY DESIGN VARIABLES TO LIBRARY 3 TO SAVE CYCLE DATA

4O

$
*IF('qVIL" LT 0.005): *GOTO EMAJORITER $ ML TOO SMALL TO CONTINUE
!MMMM - MMAJOR * MMINOR + MMAJOR

*IF("ICT" GT '_IMMM"): *GOTO EMAJORITER
*IF('qVIAJORITER" GE "MMAJOR"): *GO TO EMAJORITER $ ITERATION LIMIT
*GO TO BMAJORITER
*LABEL EMAJORITER

$
*DCALL(CLEA NL01) $ CLEAR lAP LIBRARIES
INNST - 1 $ NOTE: NLST - NUMBER OF LOAD SETS
*LABEL BSET

!LCAS-DS,I,"NNST",I(1,LSET,CASE,MASK,MASK)
!OLIB- 1

* DCALL (CALC STAT) $ STATIC ANALYSIS OF FINAL DESIGN

* XQT CONS
RESET RHOK - 'a_J-IOKS" SETz'q_'NST" NOUT="OLIB" BLEN-'q3LEN" LLIB_'q_LIB"
RESET NOJUNK-YES

!STATUS-1

* DCALL (DISP CONS)
INNST - NNST + 1

*IF("NNST" GT "NLST"): *GO TO ESET $ LOOP OVER LOAD SETS
*GO TO BSET
*LABEL ESET
!STATUS - 1
*DCALL(ADS CONS) $ WRITE OUT CONSTRAINTS IN ADS FORMAT

$
*XQT DCU
COPY 1 3 COMP DV I 1 $COPY DESIGN VARIABLES TO LIBRARY 3 TO SAVE CYCLE DATA

$
$ SAVE REGISTERS HERE

*XQT U1
* REGI STORE(1 REGI DRIV 1 1)
*ECHO 4

$ EXITING: (DRIV OPT)
$ DRIVER PROGRAM TO OPTIMIZE A STRUCTURE SUBJECT TO STRESS AND DISP CONSTRAINTS
*NOECHO 4
$
*RETURN
* ENDOPT

$

$

*(CALC ML) ENDML
*ECHO 4

$ ENTERING: (CALC ML)
$ CALCULATE MOVE LIMITS
$ ASSUMES THAT X IS POSITIVE
*NOECHO 4
$
$ GET DESIGN VARIABLES FROM X ADS, LIMITS FROM COMP DV
$ INCORPORATES MINIMUM ML RANGE BASED ON MIN GAUGE TOO

*XQT AUS
INLIB-- "ALIB"

OUTLIB-"ALIB"
DEFINE X - 1 X ADS 1 1

*IF('qVlL" LT 0.0): *GOTO SKIP
DEL - UNION ('WIL" X)
TABLE,U(TYPE--1):"SLIB" DXML

41

TRANSFER(SOURCE-DEL,OPER-XSUM)
*LABELSKIP
DEFINE DXML - "SLIB" DXML
DE1 : SOURCE - 1 COMP DV 1 1 : JS - 1 DESV MAP MASK MASK

IS - 4 : DEST- LB : EX 1
IS - 5 : DEST- LIB : EX1

MLMIN - UNION(0.1 LB) $ MAKE MIN ML TO BE 10% OF LOWER BOUND
ME- MAX(DXML,MLM_
LBML - SUM(X,-1.0 ME)
UBME - SUM(X, 1.0 ME)
TLB - MAX(LBME, LB)
TUB - MINfl.rBME, UB)
TABLE,U(TYPF_--I): I XB ADS 1 1
TRANSFER(SOURCE-TLB, OPER-XSUM, ILIM-I, 3LIM- "NDVA", DSKIP-I)
TRANSFER(SOURCE-TUB, OPER-XSUM, ILIM-I, 3LIM- "NDVA", DSKIP-I, DBASE-I)

$
*ECHO 4

$ EXITING: (CALC ME) $ CALCULATE ME
*NOECHO 4
*RETURN
* ENDME

$

$
*(ADS INIT) ENDADS
$*ECHO 1 2 3 4
*ECHO 4

$ ENTERING: (ADS INrr)
$ INITIALIZE ADS DATA
*NOECHO 4
$
$ ADS IN1T CREATES TABLES NEEDED BY THE OPTIMIZER - MOSTLY JUST SPACE
$ IS RESERVED BUT SOME INFO IS TAKEN FROM COMP DV.
$ DATASETS STILL HAVE ADS IN THEIR NAMES FROM THE OLD DAYS BUT ARE
$ CURRENTLY IN MINOS READABLE FORMAT.
_NDVA-0
!NDVB-0

!NCON-0
INDVI - 0
*LABEL BDVALOOP
!NDVI - NDVI +1

*IF('_VDVI" GT '_I)V'% *GO TO EDVALGOP SLOOP THROUGH DESIGN VARIABLES

!STA-DS,7,'rNDVI",I(I,COMP,DV,MASK2vlASK) $ GET COEFFICIENT OF A+B*DV
!STA-STA+.99999

!sTr-IFIX(STA) $1F B IS NOT ZERO DESIGN VARIABLE IS ACTIVE AND UPDATE COUNTER
* IF("STT" NE 0): !NDVA-NDVA+I $ NDVA IS NUMBER OF ACTIVE DESIGN VARIABLES
*GO TO BDVALOOP
*LABEL EDVALOOP

*XQT AUS
TABLE(NI-I,NJ-'_DVA",TYPE--I): X ADS $INITIALI_ TABLE FOR D.V'S FOR ads
TABLE(NI-I,NJ-"NDVA",TYPE--1): "SLIB" X ADS $INITIALr7_. TABLE FOR D.V'S

TABLE(NI-"NLST",NJ-"NDVA",TYPE=-I): DR X : INIT- "DR" $ INITIAL DR'S
TABLE(NI-1,NJ-"NDVA",TYPF,-- 1): "SLIB" DXML $INITIALIZE TABLE FOR D.V. ME
TABLEfNI-"NLST",NJ-"NDVA",TYPE--1): DR DIF $ INITIAL TABLE FOR FD ERRORS
TABLE(NI-2,NJ-"N'DVA",TYPF_,--1): XB ADS $INITIALIZE TABLE FOR BOUNDS FOR ADS
TABLE(N'I-1,NJ-"NDVA",TYPF.,-0):DESV MAP $INrrIALIZE TABLE FOR MAPPING ACTIVE DV'S TO DV LIST
TABLE(NI-1,NJ-1,TYPE--1): F ADS 1 1 $ INrFIALIZE TABLE FOR OBJ
TABLE(NI-1,NJ-1,TYPE--1): "SLIB" F ADS 1 1 $ INITIALIZE TABLE FOR OBJ

42

TABLE(NI-'_qDVA",NJ-1,TYPE--1) : DF ADS 1 1 $ INITIALIZE TABLE FOR OBJ GRADIENT
TABLE(NI-'_NDVA",NJ-1,TYPE--1) : "SLIB" DF ADS 1 1 $ INITIALIZE TABLE FOR OBJ GRADIENT
!STATUS - 0

TABLE(NI=5,NJ=I,TYPE-0): STAT ADS $ ADS OPTIMIZATION OPTIONS
J-l: "STATUS" 8 4 3 1
!NDVI - 0

* LABEL BDVBLOOP
!NDVI - NDVI +I

* IF("NDVr' GT '_NDV"): *GO TO EDVBLOOP SLOOP THROUGH DESIGN VARIABLES
!STA=DS ,7,' _DVI", 1(1,COMP,DV,MASK,MASK) $ GET COEFFICIENT OF A+B*DV
!STA-STA+.99999
!STI"-IFIX(STA) $IF B IS NOT ZERO DESIGN VARIABLE IS ACTIVE AND UPDATE COUNTER

IF("STr" EQ 0): *GO TO BDVBLOOP
!NDVB-NDVB+I $ ACTIVE D.V. NUMBER

!SECT-DS,I,"NDVI",I(1,COMP,DV,MASK,MASK)
!V-DS ,3,' 2qDVI", 1(1,COMP,DV,MASK,MASK) $GET DESIGN VARIABLE
!UB-DS,5,"NDVI",I (1,COMP,DV,MASK,MASK) SGET LOWER BOUND
!LB-DS,4,'qqDVI",I(1,COMP,DV,MASK,MASK) $GET UPPER BOUND
TABLE,U (TYPE-..0):DESV MAP: OPER-XSUM: J-"NDVB":"NDVI" $WRITE MAPPING TO TABLE
TABLE,U (TYPE--1):X ADS: OPER-XSUM: J-"NDVB":"V" $WRITE D.V TO TABLE
TABLE,U (TYPE=-I):XB ADS: OPER=XSUM:I-1 2: J="NDVB":"I.,B","UB" $WRITE L. B. TO TABLE

* GO TO BDVBLOOP
* LABEL EDVBLOOP

S
$ determine total number of groups for each element type
!GE21-TOC,NJ(1 GD E21 MASK MASK) $ NUMBER OF E21 GROUPS
!GE23-TOC,NJ(1 GD E23 MASK MASK) $ NUMBER OF E23 GROUPS
!GE33-TOC,NJ(1 GD E33 MASK MASK) $ NUMBER OF E33 GROUPS
!GE43-TOC,NJ(1 GD FA3 MASK MASK) $ NUMBER OFE43 GROUPS
!GE31-TOC,NJ(1 GD E31 MASK MASK) $ NUMBER OF E31 GROUPS
!GE32-TOC,NJ(1 GD E32 MASK MASK) $ NUMBER OF E32 GROUPS

!GE41-TOC,NJ(1 GD E41 MASK MASK) $ NUMBER OF E41 GROUPS
!GE42-TOC,NJ(1 GD E42 MASK MASK) $ NUMBER OF E42 GROUPS
!GE44=TOC,NJ(1 GD E44 MASK MASK) $ NUMBER OF E44 GROUPS
$ Create tables of active grps for each element type
$ by examining comp grp table - added 8/9/94
!NACT-TOC,NJ (1 COMP GRP MASK MASK)
* IF("GE21" GT 0): TABLE(NI-1,NJ-"GE21",TYPE-0):GACT E21

TABLE(NI= 1,NJ-"GE23",TYPE-0):GACT E23
TABLE(NI- 1,N J= "GE33",TYPE-0):GACT E33
TABLE(NI-1,NJ-"GE43",TYPE-0):GACT E43
TABLE(NI-1 ,NJ-"GE31",TYPE-0): GACT E31
TABLE(NI-1,NJ-"GE32",TYPE-0):GACT E32
TAB LE(NI- 1,N J-"GE41",TYPE-0): GACT E41
TABLE(NI-1,NJ-"GE42",TYPE-0):GACT E42
TABLE(NI=l,NJ-"GE44",TYPE-0):GACT E44

* IF("GE23" GT 0):
* IF("GE33" GT 0):
* IF("GE43" GT 0):
* IF("GE31" GT0):
* IF("GE32" GT 0):
* IF("GE41" GT0):
* IF("GE42" GT 0):
* IF("GE44" GT 0):
!LOOP=0
*LABEL (]LOOP

!LOOP-LOOP+ 1

*IF('_OOP" GT '_ACT"): *GO TO EGLOOP
!EXX-DS,3,'T,OOP",I (1,COMP GRP 1 1)

!NGRP=DS,4,'T,OOP",I (1,COMP GRP 1 1)
TABLE,U(TYPE-0): GACT "EXX"

I-1: J-"NGRP": 1
*GO TO GLOOP
*LABEL EGLOOP

*IF("GLIM" GE 0.0): *GO TO EGCOPY
*XQT DCU

43

COPY 1 "SLIB" GACT E21
COPY 1 "SLIB" GACT E23
COPY 1 "SLIB" GACT E31
COPY 1 "SLIB" GACT E32
COPY 1 "SLIB" GACT E33
COPY 1 "SLIB" GACT E41
COPY 1 "SLIB" GACT E42

COPY 1 "SLIB" GACT E43
COPY 1 "SLIB" GACT E44

*XQT AUS
*LABEL EGCOPY

$compute number of displacement constraints in each loadset
ILOOP-O

*LAJ3EL LS_P
!LOOP-LOOP+I

*IF("LOOP" GT 'qgLST"): *GO TO ELSLOOP
!NCAS-DS,I,'ZOOP",I (1,LSET CASE 1 1)
!DISC-NUMD*NCAS

TABLE,U(TYPE-0): LSET CASE: OPER-XSUM
I-2: J-'T,OOP": "DISC"

*GO TO I.,SLOOP
*LABEL ELSLOOP

!LOOP-FREE0
_EXX=FREE0
!NGRP-FREE0
!NACT-FREE0
$
*XQT DCU
!NNST-1
*LABEL LOOPER
SRENAME ALL DATA SETS AS INDICATED BELOW

COPY 1 "SLIB" APPL FORC 'q_NST" 1

CHANGE 1 APPL FORC '2qNST" 1,ORIG FORC '_'NST" 1
COPY "SLIB" 1 APPL FORC 'q_INST" 1

!NNST-NNST+I

*IF('_B-ST" GE '2_IST") : *GO TO LOOPER
$Clean up registers
!V-FREE0
_tm-FREE0
_LB-FREE0
_SECT-FRF_0
!NDVB-FREE0
!NDVI-FREE0
!STr-FREE0
!STA-FREE0
$
*ECHO 4

$ EXITING: (ADS INIT) $ INITIALIZE ADS DATA
*NOECHO 4
*RETURN
* ENDADS
$

$
*(CALC STAT) ENDSTA
*ECHO 4

$ ENTERING: (CALC STAT)
$ PERFORM STATIC ANALYSES OF STRUCTURE

44

*NOECHO 4

$
$ CALC STAT INCORPORATES THE DESIGN VARIABLES AND FINITE ELEMENT MODEL
$ AND CONTROLS THE EXECUTION OF A STATIC ANALYSIS
$ GET DESIGN VARIABLES FROM X ADS, LIMITS FROM COMP DV

$
$!ML
*XQT AUS

!NDVI - 1
* LABEL BDVLOOP
* IF("NDVr' GT "NDVA"): *GO TO EDVLOOP $ LOOP THROUGH DESIGN VARIABLES

!S'IT-DS,I,"NDVI",I(I DESV MAP MASK MASK) $ GET MAPPING OF ACTIVE DV
!V- DS,I,"NDVI",I(1 XADS 1 1) $ GET DESIGN VARIABLE FROM ADS
TABLE,U (TYPE--1):COMP DV 1 1: OPER-XSUM

I-3: J-"STF": "V" $ RESET DESIGN VARIABLE

I-8: J-"S'I_": 0.0 $ RESET PROP EVALUATION FLAG
!NDVI - N_VI +1

* GO TO BDVI..OOP
* LABEL EDVLOOP

*XQT DCU $ JUST TO GET THE ABOVE STUFF TO COMPLETELY EXECUTE
!ISEN-0

*DCALL(SECT INIT)$ WRITE D.V. DEFINITIONS TO ELEMENT EFILE
$ ASSEMBLE STIFFNESS MATRIX USING EAL PROCESSORS

*XQT EKS
*XQT K
*XQT RSI
RESET CON-"NNST"

*XQT EQNF
RESET SET-"N'NST" L2-"LCAS"

*XQT DCU
SRENAME ALL DATA SETS AS INDICATED BELOW

COPY 1 "SLIB" ORIG FORC "NNST" 1
CHANGE "SLIB" ORIG FORC "NNST" 1,APPL FORC "NNST" 1
COPY "SLIB" 1 APPL FORC "NNST" 1
PACK 9

*XQT AUS
!ZCAS-1
*LABEL ZLCASE
$ IF EQNF FORC DATA SET EXISTS - ADD TO APPL FORC

!EQFO-TOC, RR (1 EQNF FORC "NNST" '_CAS")
*IF("EQFO" EQ 0): *GO TO ZEND
DEFI EQIL - 1 EQNF FORC "NNST" "ZCAS"
TABLE,U(TYPE--1): APPL FORC "N'NST" 1
TRAN(SOUR-EQIL,OPER-SUM,L 1-"ZCAS",L2-"ZCAS")
*LABEL ZEND
!ZCAS-ZCAS+I

*IF("LCAS" GE "ZCAS"): *GO TO ZLCASE
*XQT DCU
!ZCAS- 1
*LABEL CAS2

DISABLE 1 EQNF FORC "NNS'I"' "ZCAS"
!ZCAS-ZCAS+I

*IF("LCAS" GE "ZCAS"): *GO TO CAS2
*XQT SSOL $CALCULATE DISPLACEMENTS FOR LOADSET NNST
RESET SET-"NNST" CON-"NrNST ''

!NN3-TOC,N3(1 ,K,SPAR,MASK,MASK) $ GET FULL K SPAR DATASET NAME
!NN4-TOC,N4(1,K,SPAR,MASK,MASK)
!NAMI-'STAT

45

!NAM2-'DISP
!NAM3-NNST
!NAM4=NNST

$ OLIB IS WHERE STRESS RESULTANTS FROM *XQT ES GO
*DCALL(CALC N) $CALCULATE STRESS RESULTANTS USING ES PROCESSOR
!NAM1 -FREE0
!NAM2-FREE0
_NAM3=FREE0
_NAM4=FREE0
*XQT DCU
$RENAME ALL DATA SETS AS INDICATED BELOW

COPY 1 "SLIB" STAT DISP "NNST" "NNST"

CHANGE 1 STAT DISP 'q_INST" "NNST",PREV DISP '%rNST" 'q_NST"
COPY "SLIB" 1 STAT DISP "NNST" 'q_/NST"
COPY 1 "SLIB" STAr REAC 'q_rNST" "NNST"

CHANGE 1 STAT REAC "NNST" "NNST",PREV REAC "NNST" "NNST"
COPY "SLIB" 1 STAT REAC 'q_rNST' "NNST"

CHANGE 1 APPL FORC '2qNST" 1,PREV FORC "NNST" 1
DISABLE 1 DEM DIAG 0 0

CHANGE 1 K SPAR "NN3" "NN4" KP SPAR 'q_/N3" "NN4"
CHANGE 1 INVA K '2ffNST" 0,INVA KP "NNST" 0
CHANGE 1 XlNV K "NNST" 0,XINV KP "NNST" 0
PACK 9

*IF("NNST" GT 1): *GO TO ENDOFSTAT $ DO THE FOLLOWING ONLY FOR FIRST LOAD SET
$ CALCULATE TOTAL STRUCTURAL WEIGHT - OBJECTIVE FUNCTION

$ THIS IS DONE BECAUSE EAL PROCESSOR E IS NOT EXECUTED FOR SENSITIVH_S
* XQT AUS
* DCALL(CALC MASS) $ PROCEDURE TO COMPUTE TOTAL MASS

TABLE,U(TYPE---1): 1 F ADS 1 1
OPER-XSUM: I-1: J-l: "MASS"

* XQT DCU $ TO GET OUT OF AUS
! OMAS-MASS
* ECHO 4

$ MASS OF THE STRUCTURE IS:
* NOECHO 4

!MASS
*LABEL ENDOFSTAT
*ECHO 4

$ EXITING: (CALC STAT) $ PERFORM STATIC ANALYSES OF INITIAL (UNPERTURBED) STRUCTURE
*NOECHO 4
$
*RETURN
* ENDSTA
$

$
*(CALC N) ENDCN
*ECHO 4

$ ENTERING: (CALC N)
$ CALCULATE STRESS RESULTANTS
*NOECHO 4

$ THIS PROCEDURE USES ES TO CALCULATE THE STRESS RESULTANTS
$ FOR THE ACTIVE DESIGN REGIONS
$
*XQT ES
PMODE,-2 $ INHIBIT PRINTOUT
OUTLIB- "OLIB"

U- 1 '_AMI" "NAM2" "NAM3" "NAM4" $ CURRENT DISPLACEMENTS

46

NODES--0 $ ELEMENT CENTER ONLY
OUTPUT TYPE - SR

* IF("GE21" EQ 0): *GO TO 2500
!IE-GE21
!NAM5-'E21

* DCALL(STRS GRP) $ CALCULATE E21 STRESS RESULTANTS
* LABEL 2500

* IF("GE23" EQ 0): *GO TO 2501
!IE-GE23
!NAM5='E23
OUTPUT TYPF_,--ES

* DCALL(STRS GRP) $ CALCULATE E23 STRESS RESULTANTS
OUTPUT TYPE .- SR

* LABEL 2501

* IF("GE31" EQ 0): *GO TO 2502
_IE,-GE31
!NAM5-'E31

* DCALL(STRS GRP) $ CALCULATE E31 STRESS RESULTANTS
* LABEL 2502

* IF("GE32" EQ 0): *GO TO 2503
!IE-GE32
!NAM5-'E32

* DCALL(STRS GRP) $ CALCULATE E32 STRESS RESULTANTS
* LABEL 2503

* IF("GE33" EQ 0): *GO TO 2504
!IE-GE33
!NAM5-'E33

* DCALL(STRS GRP) $ CALCULATE E33 STRESS RESULTANTS
* LABEL 2504

* IF("GEAI" EQ 0): *GO TO 2505
!IF_.-GE41
!NAM5-'E41

* DCALL(STRS GRP) $ CALCULATE E41 STRESS RESULTANTS
* LABEL 2505

* IF("GE42" EQ 0): *GO TO 2506
tlE-GE42
!NAMS-'E42

* DCALL,(STRS GRP) $ CALCULATE E42 STRESS RESULTANTS
* LABEL 2506

* IF("GE43" EQ 0): *GO TO 2507
!IE-GE43
!NAMS-'E43

* DCALL(STRS GRP) $ CALCULATE E43 STRESS RESULTANTS
* LABEL 2507

* IF("GE44" EQ 0): *GO TO 2508
_IE-GE44
_NAMS-'E44
OUTPUT TYPE-ES

* DCALL(STRS GRP) $ CALCULATE E44 STRESS RESULTANTS
* LABEL 2508

!m-VRV__0
!NAM5-FREE0
*ECHO 4

$ EXITING: (CALC N) $ CALCULATE STRESS RESULTANTS
*NOECHO 4
$
*RETURN
* ENDCN

47

$
.. *

$

• (CALC SENS) ENDSEN
• ECHO 4

$ ENTERING: (CALC SENS)
$ CALCULATE DK/DV, DM/DV, STRESS RESULTANT AND DISPLACEMENT DERIVATIVES
• NOECHO 4
$

$ this routine loops thru'all the active design variables, perturbs them, and
$ controls the calculation of the sensitivities
$
!OLIB - OTIB
!I/V-1
!ISEN- 1

• LABEL BDVLOOP $ loop thru active design variables
• IF("IIV" GT "NDVA"): *GO TO EDVLOOP

!IIVV-DS,I,"IIV",I(1,DESV,MAP,MASK,MASK)
!DVP-DS,3,"IIVV",I(1,COMP,DV,MASK,MASK) $ GET DESIGN VARIABLE
!BQ - ABS(DVP)
!DR - DS,'_INST","IIV",I (1,DR,X,MASK,MASK) $ GET DR FOR DESIGN VARIABLE

• IF("BQ" GT "DR'5 : !DV-DR*DVP+DVP : !DELV-DR*DVP $NORMAL PERTURBATION
• IF("BQ" LE "DR'_ : !DELV - DR*DR : !DV-DVP + DELV $PERTURBATION FOR SMALL DVP

!AQ-1./DELV
!BQ--1.*AQ

• XQT AUS
!NBLK - TOC,NBLOCKS(1 STRS DCON "NNST" '_IV")

• IF('_'BLK" GT 0): *GO TO EXISTS
$ determine size of constraint dataset and create

!NINJ - TOC,NINJ(1 STRS CONS 'q_rNST" 1)
!NJ - TOC,NJ (1 STRS CONS 'q_INST" 1)
!NI-NINJ/NJ
TABLE(NI-'q_I",NJ-'[NJ",TYPE--1): 1 STRS DCON 'rNNST" '_/V"

• LABEL EXISTS

TABLE,U(TYPE--1):COMP DV$ UPDATE DESIGN VARIABLE LIST
OPER-XSUM
1-3 : J-"IIVV":"DV" $Write PERTURBED DESIGN VARIABLE TO LIST

I-8 : J-"IIVV":-I. $SET FLAG TO INDICATE DESIGN VARIABLE IS PERTURBED
• XQT DCU

ERASE "OLIB"
DISABLE 1 APPL FORC 50 MASK
DISABLE 1 STAT DISP 50 MASK
DISABLE 1 STAT REAC 50 MASK
H_IARK-0

• LABEL BSRDELETE $ disable all ES Exx datasets

!DUMM - TOC,NWDS(1 SR MASK MASK MASK) MARK
• IF('qVIAR.K" EQ -1): *GO TO ESRDELETE

DISABLE 1 '_IARK"
• GOTO BSRDELETE
• LABEL ESRDELETE

_/vlARK-0

• LABEL BESDF_J..E'I_ $ disable all ES Exx datasets

!DUMM - TOC,NWDS(1 ES MASK MASK MASK) MARK
• IF('_tRK" EQ -1): *GO TO EESDELETE

DISABLE 1 "MARK"

• GOTO BESDELETE
• LABEL EESDELETE

PACK 1 $ clean out all disabled datasets from LIB 1

48

* DCALL(SECTIN-IT)$WRITENEWSTIFFNESSES FOR PERTURBED VARIABLE

* XQT AUS
INLIB -"ALIB"
OUTLIB -"ALIB"

* IF('q_INST" GT 1): *GO TO ENDOFDWT $ DO THE FOLLOWING ONLY FOR FIRST LOAD SET
$ CALCULATE GRADIENT OF TOTAL STRUCTURAL WEIGHT - OBJECTIVE FUNCTION
* DCALL(CALC MASS) $ calc mass of perturbed structure
! DELM-MASS-OMAS $ change in mass

! GOBJ-AQ*DELM $ weight gradient
TABLE,U(TYPE,--1): 1 DF ADS 1 1 STABLE OF DERIVATIVES OF OBJECTIVE FUNCTION

OPER-XSUM: I='TIV":J- I:"GOBJ"
TABLE,U(TYPE--1):"SLIB" DF ADS 1 1 $ TABLE OF DERIVATIVES OF OBJECTIVE FUNCTION

OPER-XSUM: I-'q_IV":J-I:"GOBJ"

* ECHO 4
$ WEIGHT GRADIENTS

!IIV
!GOBJ

* NOECHO 4

!GOB J-FREE0
!DELM-FREE0

* LABEL ENDOFDWT

* DCALL(CALC DUDV) $ CALCULATE DISPLACEMENT DERIVATIVES
* DCALL(CALC DELN) $ CALCULATE STRESS RESULTANT PERTURBATIONS
* XQT DCU $ PUT PERTURBED DISPLACEMENTS IN OLIB

COPY 1 "OLIB" U DELU '_ffNST" 1
CHANGE "OLIB" U DELU 'q_INST" 1 STAT DISP "NNST" '_NST"
COPY 1 "OLIB" R DELU 'qffNST" 1
CHANGE "OLIB" R DELU "NNST" 1 STAT REAC '_'NST" 'qqNST"

ERASE "ALIB"
PRIN 1 COMP DV

* XQT AUS
* XQT CONS $ PROCESSOR TO EVALUATE CONSTRAINTS (stress & local buckling)

RESET RHOK - "RHOKS" SET-"N'NST" NOUT="OLIB" BLEN-'q3LEN" LLIB='TJ..IB"

RESET NO JUNK- YES
!STATUS- 1

* DCALL(DISP CONS) $ compute displacement constraints

*XQT AUS
$ COMPUTE CONSTRAINT SENSITIVITIES BY FINITE DIFFERENCE

DEFINE OCON - 1 STRS CONS "NNST" 1
DEFINE NCON - "OLIB" STRS CONS "NNST" 1

TABLE,U(TYPE--1): 1 STRS DCON 'q_-NST" 'q_IV"$ SUM("AQ" NCON, 'q3Q" OCON)
TRANSFER(SOURCE-OCON,OPER-XSUM,C-'_BQ '') $,L2-"LCAS")
TRA.NSFER(SOURCE-NCON,OPER-SUM ,C-"AQ") $,L2-'_LCAS '')

$
TABLE,U(TYPE--1):COMP DV $ RESET DESIGN VARIABLE TO ORIGINAL VALUE
OPER-XSUM: I-3 : J-'qlVV":'T)VP"

* XQT MBED $ RESET SECTION DATA TO UNPERTURBED STATE
RESET COMP="JS" NOUT="ALIB"

*XQT DCU
*DCAJ_J.,(ELEM MBED) Sreturn e-state to unperturbed condition

* XQT EKS
SELECTION-"ALIB" ETAB

!IIV - IIV + 1
*GO TO BDVLOOP
*LABEL EDVLOOP

*ECHO 4
$ EXITING: (CALC SENS) $ CALCULATE DK/DV, DM/DV, STRESS CONSTRAINT AND DISPLACEMENT
DERIVATIVES

49

*NOECHO 4
$
*RETURN

* ENDSEN
$

$
*(CALC DUDV) ENDDUV $CALCULATE DU/DCAPV - DISPLACEMENT DERIVATIVES
*ECHO 4

$ ENTERING: (CALC DUDV)
$ CALCULATE DISPLACEMENT DERIVATIVES
*NOECHO 4

$ THIS ROUTINE CALCULATES THE DISPLACEMENT DERIVATIVES BY SEMI-ANALYTIC
$ METHOD - DK/DV COMPUTED BY FINITE DIFFERNCE. ONLY PORTION OF K MATRIX
$ (LSK LS DATASETS) AFFECTED BY DV CHANGE IS DIFFERENCED
$
[LL3-TOC,N3COLIB"J..SK,LS,MASK,MASK) $ GET FULL LSK LS DATASET NAME
tLL4-TOC,N4("OLIB",LSK,LS,MASK,MASK)
*XQT AUS

DEFINE KN- "OLIB" LSK LS '_L3" 'T,L4" $ NEW K MATRIC SECTION
DEFINE KO- "ALIB" LSK LS 'q.L3" 'T,L4" $ OLD K MATRIC SECTION

DEFINE U-PREV DISP '_INST" 'q_NST" $ UNPERTURBED DISPLACEMENT VECTOR
"SLIB" KU VECT 'qqNST" - PRODfKO,U)
"OLIB" KU VECT '2qNST" - PROD(KN,U)
DEFINE KUH - "OLIB" KU VECT "NNST"
DEFINE KUL - "SLIB" KU VECT 'qNrNST ''

DKU -SUM("AQ" KUL, '_Q" KUI-I) $ DKU - -dK/dV*u
Sthe following section calculates DF/DV (force sensitivities) if either

San EQNF FORe or intertia force (grav.ne.0) is included
*XQT EQNF
RESET SET-"N'NST" L2-"LCAS"

*XQT DCU
$RENAME ALL DATA SETS AS INDICATED BELOW

COPY 1 "SLIB" ORIG FORe '2ffNST" 1

CHANGE "SLIB" ORIG FORC 'q_INST" 1,APPL FORC '2qNST" 1
COPY "SLIB" 1 APPL FORe '2qNST" 1
PACK 9

*XQT AUS
!ZCAS-I
*LABEL ZLCASE

!EQFO-TOC, RR (1 EQNF FORe "NNST" '_CAS")
*IF("EQFO" EQ 0): *GO TO ZEND
DEFI EQIL - 1 EQNF FORC "NNST" "ZCAS"
TABLE,U(TYPE--1): APPL FORC '_'NST" I
TRAN(SOUR-EQIL,OPER-SUM,L 1-"ZCAS",L2-"ZCAS")
*LABEL ZEND
!ZCAS-ZCAS+ 1

*IF("LCAS" GE "ZCAS"): *GO TO ZLCASE
$FINrIE DIFFERENCE OF LOAD VECTOR
DEFI NEWF-APPL FORC '_'NST" 1
DEFI OLDF-PREV FORC "NNST" 1

DELF-SUM("AQ" NEWF, "BQ" OLDF)

APPL FORe 50 - SUM(DELF,DKL0 $ {dF/dV-dK/dV*u }
*XQT DCU
DISABLE 1 APPL FORC "NNST" MASK
!ZCAS-I
*LABEL CAS2

DISABLE l EQNF FORC '_/NST" ,ZCAS"

50

!ZCAS-ZCAS+I

*IF("LCAS" GE "ZCAS"): *GO TO CAS2
$ end of DF/DV calculation
$
$ clean up old datasets
DISABLE 1 M AUS MASK MASK
DISABLE 1 WT FORC '_NNST" 1
DISABLE 1 DELF AUS
DISABLE 1 DKU AUS
PACK 1

XQT SSOL $ static solution [Kinv]{dF/dV-dK/dV*u)
RESET SET-50, CON -'qqNST", K-KP

*XQT AUS
!ICAS- 1
*LABEL BCASELOOP $ loop over load cases
*IF('_ICAS" GT 'Z,CAS"): *GO TO ECASELOOP
* IF('qIV" GT 1): *GO TO NOTFIRST

INBLK - TOC,NBLOCKS(1 DUDV CAPV 'qffNST" "ICAS")
$ SET LIP DUDV CAPV DATASET IF REQUIRED (lst time thru)

* IF('qffBLK" GT 0): *GO TO NOTFIRST
!NINJ - TOC,NINJ(1 STAT DISP 50 'rN'NST")
!NJ - TOC,NJ (1 STAT DISP 50 "NNST")
!N]-N]NJ/NJ

TABLE(NI-'rNI",NJ-'_J",TYPE--1): DUDV CAPV "NNST" '_ICAS"
_IBLK-1

* LABEL DULOOP $ INITIALIZE ALL BLOCKS OF THE DATA SET

* IF("IBLK" GT "NDVA"):*GO TO NOTFIRST
BLOCK "IBLK"
!113I_.1(- IBLK +1

* GO TO DULOOP
* LABEL NOTFIRST

DEFI DU50-STAT DISP 50 'rNNST" '_CAS", '_CAS" $ DERIVATIVE OF DISPLACEMENT

TABLE,U(TYPE--1): DUDV CAPV '_INST" '_ICAS" SPut dU/dV in blk iiv of DUDV CAPV
TRANSFER(SOURCF_,-DU50,OPERATION--XSUM,L 1-_'q-IV",L2="IIV")

! ICAS - ICAS + 1
*GO TO BCASELOOP
*LABEL ECASELOOP
*ECHO 4

$ EXITING: (CALC DUDV) $ CALCULATE DISPLACEMENT DERIVATIVES
*NOECHO 4

$
*RETURN
* ENDDUDV
$

.. *

$
*(CALC DELN) ENDDELN
*ECHO 4

$ ENTERING: (CALC DELN)
$ CALCULATE PERTURBED DISPLACEMENTS AND STRESS RESULTANTS
*NOECHO 4

$ CALCULATE NEW DISPLACEMENTS BASED ON GRADIENT PREVIOUSLY CALCULATED
$ FOR EACH LOAD CASE - U(NEW)-U(OLD)+(DU/DV)*DELV
$ ROUTINE CALC N CALLED TO COMPUTE STRESS RESULTANTS FOR U(NEW)

*XQT AUS
INLIB - "ALIB"
OUTLIB - "ALIB"
!NCAS - 1 $ LOOP OVER LOAD CASES

51

* LABEL BLCASE

* IF("NCAS" GT '_CAS"): *GO TO ELCASE
* IF("NCAS" GT 1): *GO TO NOTFIRSTLC

!NBLK-TOC,NBLOCKS(1 U DELU '_INST" 1)
$ SET UP U DELU DATASET IF REQUIRED
* IF('q_IBLK" GT 0): *GO TO NOTFIRSTLC

!NINJ - TOC,NINJ(1 PREV DISP 'qqNST" "NNST")
!NJ - TOC,NJ (I PREV DISP "NNST" '_NST")
!NI-NINJ/NJ

TABLE(NI-'_NI",NJ="NJ",TYPE--1): 1 U DELU '_NNST" 1
!IBLK-1

* LABEL ULOOP $ INITIALIZE ALL BLOCKS OF THE DATA SET

* IF('q.BLK" GT "LCAS"):*GO TO NOTFIRSTLC
BLOCK "IBLK"
!IBLK - IBLK +1

* GO TO ULOOP

* LABEL NOTFIRSTLC $ APPEND U DELU DISPLACEMENTS TO DATASET
DEFINE U1- 1 PREV DISP '_rNST" '_N'NST" '_NCAS",'_NCAS"
DEPTNE U2- 1 DUDV CAPV 'q_rNST" '_ICAS" '_IIV",'T[V"

$ TRAN used instead of AUS SUM because its faster

$ CHANGED FROM AUS/SUM(UI,'_)ELV" U2)
TABLE,U(TYPE--1) : I U DELU '_VNST" 1

TRANSFER(SOURCF_U1,OPERATION-XSUM,L 1-"NCAS"J..2-"NCAS")
TRANSFER(SOURCE-U2,C-'q)ELV",OPERATION-SUM,LI-'_ICAS",L2-'_CAS'

!NCAS - NCAS + 1
* GO TO BLCASE
* LABEL ELCASE

$ LEAVING AUS HERE
!NAMI-'U
!NAM2-'DELU
!NAM3-"NNST"
!NAM4-'MASK

*DCALL(CALC N) $ CALCULATE STRESS RESULTANTS BASED ON NEW DISPLACEMENTS
*ECHO 4

$ EXITING: (CALC DELN) $ CALC. PERTURBED DISP AND STR RESULTANTS
*NOECHO 4
*RETURN

* ENDDELN
$

$
*(SECT IN1T) ENDINI $ WRITE SECTION DATA
*ECHO 4

$ ENTERING: (SECT INIT)
$ CHANGE SECTION PROPERTIES
*NOECHO 4

$ this routine writes the section properties from the design variables in
$ COMP DV. New section props written for any DV with a status flag (I-8)
$ of zero or - 1.
$
_LSEC-0
!NDVI - 0

*LABEL BDVLOOP $ loop over design variables
!NDVI - NDVI +1

$ check status flag in COMP DV for each design variable
$ if flag is zero or - 1 a new section property is needed
*IF('q_,rDVI" GT 'q_IDV'_: *GO TO EDVLOOP

!STA-DS,8,'qqDVI",I(1,COMP,DV,MASK,MASK) $ GET STA FLAG OF DESIGN VARIABLE

52

!STr-IHX(STA) $ TO DETERMINE IF THE STIFFNESS NEEDS UPDATING
* IF("STr" GT 0): *GO TO BDVLOOP

!SECT=DS,I,'_NrDVI",I (1,COMP3)V,MASK,MASK) $ GET COMPONENT NO.

!JS-IFIX(SECT+.001) $ FIND INTEGER OF SECT

* XQT AUS
TABLE,U(TYPE--1):COMP DV $ RESET DESIGN VARIABLE TO ORIGINAL VALUE
OPER-XSUM: I-8 : J-'2ql)VI": 1. $ RESET FLAG TO ZERO

* IF("JS" EQ '_,SEC"): *GO TO BDVLOOP $ WAS LAST UPDATED, DON'T GENERATE NEW STIFFNESS
MATRICES

!LSEC-JS
ERASE "ALIB"

$ MBED processor determines elements affected and writes stiffnesses based on
$ the current design variable data in COMP DV
* XQT MBED $ UPDATE SECTION DATA

RESET COMP-"JS" NOUT-"ALIB"

*XQT DCU
$ execute the following 2 lines if sensitivities are not required (base design)
* IF("ISEN" NE 0): *GO TO DOSENS
* DCALL(ELEM MBED) $ embed stiffnesses in efile
* GO TO BDVI..OOP
* LABEL DOSENS

* XQT EKS $ generate element stiffnesses for modified elements
SELECTION-"ALIB" ETAB

* XQT LSK $ form unperturbed submatrix in ALIB
RESET DEST- "ALIB"
SELECTION - "ALIB" ETAB

*DCALL(E M MBED) $embed perturbed stiffnesses in efile
* XQT EKS $ generate element stiffnesses for modified elements

S ELECTION-"ALIB" ETAB

* XQT LSK $ form perturbed subma_ix in OLIB
RESET DEST- "OLIB"
SELECTION - "ALIB" ETAB

*XQT DCU
*GO TO BDVLOOP
*LABEL EDVLOOP

!SECT-FREE0 $clean up old registers
_NDVI-FREE0
!STI'-FREE0
!STA-FREE0
!LSEC-FREEO
*ECHO 4
$ EXITING: (SECT INIT) $ CHANGE SECTION PROPERTIES
*NOECHO 4
$
*RETURN
* ENDINI

$

$

*(STRS GRP) ENDGRP
$ loops over all groups of element type Exx-"NAM5" and specifies stress
$ computation for all groups labeled as active in GACT '_AM5"
!IV-0
*LABEL BGROUPLOOP
!IV-IV+ 1

*IF("IV" GT '_[E") : *GO TO EGROUPLOOP
!GACT - DS,1, "IV",I (1, GACT "NAM5" 1 1)
*IFCGACT" EQ 0): *GO TO BGROUPLOOP $ group not active

53

'_IAM5" 'TV" $ CREATE ES TABLE FOR EXX GROUP IV
*GO TO BGROUPLOOP
*LABEL EGROUPLOOP

!rv = FREE()
*RETURN
* ENDGRP

$

$
*(DISP CONS) ENDCON
*ECHO 4

$ ENTERING: (DISP CONS)
$ DISPLACEMENT CONSTRAINTS AND DERIVATIVES
*NOECHO 4

$ routine gets displacement limits from DEFL DEFI dataset and
$ then gets calculated deflection from stat disp and formulates
$ the conslraint or sensitivity value and writes to STRS CONS
$ or STRS DCON data.set
$
*XQT AUS

!CNOD - 0
* LABEL BCNODELOOP $ LOOP FOR CONSTRAINED NODES

!CNOD - CNOD + 1

* IF("CNOD" GT 'q_rUMD"): *GO TO ECNODELOOP
tXNOD-DS, 1 ,"CNOD", 1(1 ,DEFL DEFI,MASK,MASK)$ NODE NO.
!NOD-IFIXCXNOD)
!DIR-DS,2) 'CNOD", 1(1 ,DEFL,DEFI,MASK,MAS K) $ DIRECTION
_NDm-IFLX(Dm)
ILIM-DS,3,"CNOD", 1(1 ,DEFL,DEFI,MASK,MASK) $ LIMIT
!NC - 1

* LABEL BCASELOOP $ LOOP OVER CASE NUMBER

* IF("NC" GT '_CAS"): *GO TO ECASELGOP
* IF("STATUS" EQ 2): *GO TO DERIVS
$ CONSTRAINTS ONLY, "OLIB" ASSUMED FOR STAT DISP & STRS CONS

!DEL-DS,, _rDIR","NOD",'_NC"("OLIB",STAT,DISP,'rNNST",' qffNST '')
!CON-D_-I. $ DISPLACEMENT CONSTRAINT VALUE
!NUMJ-NC*NUMD+CNOD-NUMD

!NNNS - TOC, NWDS("OLIB" STRS CONS 'qqNST" 1)
!NNNN - -LCAS*NUMD + NUM/+ NNNS

TABLE,U(TYPF_,--1):"OLIB" STRS CONS "N'NST" 1 $ UPDATE DEFL CONSTR IN THIS DATASET
OPER-XSUM: J-"NNNN":"CON"

GO TO ENDIF
LABEL DERIVS $ DERIVATIVES ONLY
!NUMI- 1
LABEL BDVLOOP $ LOOP OVER DESIGN VARIABLES

IF('qqUMI" GT "NDVA"): *GO TO EDVLOOP
IDEL-DS,' q_rDIR",'_OD",'q_UMI"(1 ,DUDV,CAPV,'_NST",'_NC")
ICON-DEL/LIM $ DERIVATIVE OF DISPLACEMENT CONSTRAINT
!NUMJ-NC *NU'MD+CNOD-NUMD
!_ - -LCAS*NUMD + NLrMI + NNNS

TABLE,U(TYPE--1):STRS DCON "NNST" 'q_'UMI" $write sens to STRS DCON
OPER-XSUM: J-'qqNNN": "CON"

INUMI - NUMI + 1
GO TO BDVLOOP

LABEL EDVLOOP
LABEL ENDIF

!NC - NC + 1
GO TO BCASELOOP

54

* LABEL ECASELOOP
* GO TO BCNODELOOP
* LABEL ECNODELOOP
*ECHO 4
$ EXITING: (DISP CONS) $ DISPLACEMENT CONSTRAINTS AND DERIVATIVES
*NOECHO 4
*RETURN
* ENDCON

$

$
*(ADS CONS) ADSCON
*ECHO 4

$ ENTERING: (ADS CONS)
$ ASSEMBLE CONSTRAINT AND DERIVS FOR OPTIMIZER
*NOECHO 4

$ this routine put constraints and constraint sensitivities in to tables to be
$ read by the optimizer. The ADS in names are are a remnant of when the ADS

$ optimizer was used.
$
*XQT AUS

!NWDS ,- TOC, NWDS(1 G ADS 1 1)
* IF('_'WDS" NE 0) : *GO TO TABLEEXISTS $ CHECK IF OPT CONSTRAINT TABLES EXIST
!SLOOP-0
*LABEL BSETLOOP
! SLOOP-SLOOP+I

* IF("SLOOP" GT '_I_.ST") : *GO TO ESETLOOP
!NWDX - TOC, NWDS(1 STRS CONS "SLOOP" 1)
!NWDS - NWDS + NWDX

*GO TO BSETLOOP
*LABEL ESETLOOP

TABLE(NI-1,NJ-"N'WDS",TYPE--1) : G ADS 1 1

TABLE(NI-1,NJ-"NWDS",TYPE--1) : "SLIB" G ADS 1 1
TABLE(NI**I,NJ-_"NWDS",TYPE--1) : "SLIB" GLIN ADS 1 1
TABLE(NI-1,NJ-'q'CWDS",TYPE--1) : COG LIP 1 1
TABLE(NI-"NDVA",NJ-'qqWDS",TYPE--1) : DG ADS 1 1

* LABEL TABLEEXISTS
!NNST- 1
_STAR - 0

* LABEL BLSETLOOP $ loop over load sets
* IF('q_INST" GT '_-I_.ST"): *GO TO ELSETLOOP

!NWDX - TOC, NWDS(1 STRS CONS '_-NST" 1)

* IF("STATUS" EQ 2) : *GO TO DERIVS
$ CONSTRAINTS ONLY - put data from STRS CONS into G ADS

DEFINE TEMP - "OLIB" STRS CONS 'q_'NST" 1

TABLE,U(TYPE--1): G ADS 1 1
TRANSFER(OPERATIONmXSUM,SOURCE_TEMP,ILIM* 1,JLIM='q'_rWDX",DB ASE-"STAR '')

*XQT AUS
* IF('_flNORITER" NE 0):* GO TO ENDIF
$ FIND MAXIMUM CONSTRAINT VIOLATION FOR START OF MAJOR ITER

DEFINE TEMP _ G ADS 1 1

"ALIB" Z - MM1 (TEMP)
!CMAX - DS,I,I,I("ALIB" Z MASK MASK MASK)

* GO TO ENDIF
* LABEL DERIVS $ DERIVATIVES ONLY

!DVII-- 1
* LABEL BDVLOOP $ LOOP OVER DESIGN VARIABLES

$ put sensitivities for each design variable from STRS DCON "NNST" 'q)VII"

55

$ into one big DG ADS dataset
* IF('T)VII" GT 'q_rDVA"): *GO TO EDVLOOP

DEFINE TEMP -=STRS DCON 'q_rNST" ?DVII"

!DVBS - STAR*NDVA + DVII-1 $ (lset#-l)*#con_l_lset*#dv + dv# -1 IS THE DBASE
!SKIP - NDVA - 1

TABLE,U(T E--l) : DG ADS 1 1

TRANSFER(OPER-XSUM,SOURCE-TEMP jLIM- 1 ,JLIM-' _-WDX' ',>
DBASE-'q)VBS", DSKIP-"SKIP")

!DVII - DVII + 1
* GO TO BDVLOOP
* LABEL EDVLOOP
* LABEL ENDIF

!NNST - NNST + 1
!STAR-STAR+NWDX

* GO TO BLSETLOOP
* LABEL ELSETLOOP

*XQT DCU
PRINT "ALIB" Z

!CMAX
*ECHO 4
$ EXITING: (ADS CONS) $ ASSEMBLE CONSTRAINT AND DERIVS FOR ADS
*NOECHO 4
*RETURN
* ADSCON
$

$
*(CLEA NL01) CLEANLD 1
*ECHO 4

$ ENTERING: (CLEA NL01)
$ CLEAN UP LIBRARY L01
*NOECHO 4

$ this routine disables datasets no longer required
$ and then deletes them with a pack command
$

*XQT DCU
!MARK=0
!MARK= 1

* LABEL BSTATDELETE
DISABLE 1 PREV DISP MASK MASK
DISABLE 1 PREV REAC MASK MASK
DISABLE 1 DEMP DIAG MASK MASK
DISABLE 1 INVA KP MASK MASK
DISABLE 1 XINV KP MASK MASK
DISABLE 1 STAT DISP MASK MASK
DISABLE 1 STAT REAC MASK MASK
!MARK - MARK + 1

* IF("MARK" LE '_-I__T"): *GO TO BSTATDELETE
DISABLE 1 IC ADS 0 0
!MARK-0

* LABEL BAUSDELETE

[DUMM - TOC,NWDS(1 MASK AUS MASK MASK) MARK
* IF("MARK" EQ -1): *GO TO EAUSDELETE

DISABLE 1 "MARK"
* GOTO BAUSDELETE

* LABEL EAUSDELETE
PACK 1

*ECHO 4

56

$ EXITING: (CLEA NL01) $ CLEAN LIP L01 LIBRARY
*NOECHO 4
*RETUR_
* CLEANL01

$
*(CALC MASS) ENDMASS
*ECHO 4

SENTERING: (CALC MASS)
*NOECHO 4
$ routine which controls mass calculation of finite element model
$ calls MASS GRP1 for 1D elems and MASS GRP2 for 2D elems
!MASS-0.

* IF("GE21" EQ 0): *GO TO 8900
!NAMS='E21
_IE=6

* DCALL(MASS GRP1) $ CALCULATE E21 MASS
* LABEL 8900

ffF_,=2

* IF("GE23" EQ 0): *GO TO 8901
!NAM5-q_23

* DCALL(MASS GRP1) $ CALCULATE E23 MASS
* LABEL 8901

* IF('GE31" EQ 0): *GO TO 8902
!NAM5-q_31

* DCALL(MASS GRP2) $ CALCULATE E31 MASS
* LABEL 8902

* IF("GE32" EQ 0): *GO TO 8903
!NAM5-q_32

* DCALL(MASS GRP2) $ CALCULATE E32 MASS
* LABEL 8903

* IF("GE33" EQ 0): *GO TO 8904
!NAM5-'E33

* DCALL(MASS GRP2) $ CALCULATE E33 MASS
* LABEL 8904

* IF("GE41" EQ 0): *GO TO 8905
!NAMS-q__.41

* DCALL(MASS GRP2) $ CALCULATE E41 MASS
* LABEL 8905

* IF("GE42" EQ 0): *GO TO 8906
lNAMS-'E42

* DCALL(MASS GRP2) $ CALCULATE E42 MASS
* LABEL 8906

* IF("GE43" EQ 0): *GO TO 8907
!NAMS-_E43

* DCALL(MASS GRP2) $ CALCULATE E43 MASS
* LABEL 8907
* IF("GE44" EQ 0): *GO TO 8908

!NAMS-'E44

* DCALL(MASS GRP1) $ CALCULATE E44 MASS
* LABEL 8908

!IE-FREE0
!NAMS-FREE0
*ECHO 4

$ EXITING: (CALC MASS)
*NOECHO 4
*RETURN
* ENDMASS

57

S
S ..

$
*(MASS GRP1) ENDMGRP1
*ECHO 4
$ENTERING: (MASS GRP1)
*NOECHO 4

$ routine calculated mass of various 1D element types by extracting
$ element lengths, areas, and densities from element efile
*XQT EI1
EXTRACT

SOURCE-'_AM5"
CONTENT SPEC

GEOM 1 : CREATE "ALIB" GEOM ELEM Stable of elem lengths
CONTENT SPEC

SECT "IE" : CREATE "ALIB" SECT ELEM Stable of elem areas
CONTENT SPEC

MATE 4: CREATE "ALIB" DENS ELEM Stable of elem densities

*XQT AUS
INLIB-"ALIB" : OUTLIB-"ALIB"
DEFI X-SECT ELEM :DEFI Y-DENS ELEM :DEFI Z-GEOM ELEM

UWT ELEM - PROD(X,Y)
GRP WT - XTY(Z,UWT)

!GWT-DS, 1,1, I("ALIB",GRP ,WT,MASK,MASK)
{MASS - MASS + GWT

!GWT-FREE0
*ECHO 4

$EXITING: (MASS GRP1)
*NOECHO 4
*RETURN
* ENDMGRP1

S ..

S
*(MASS GRP2) ENDMGRP2
*ECHO 4

$ENTERING: (MASS GRP2)
*NOECHO 4

$ routine calculated mass of various 2D element types by extracting
$ element areas and unit weights from element efile
*XQT EI1
EXTRACT
SOURCE-'94AM5"

CONTENT SPEC

GEOM 1 : CREATE "ALIB" GEOM ELEM Stable of element areas
CONTENT SPEC

SECT 2 : CREATE "ALIB" SECT ELEM Stable of element unit weights
*XQT AUS

INLIB-"ALIB" : OUTLIB-"ALIB"
DF__ X-SECT ELEM : DEFI Z-GEOM ELEM

GRP WT - XTY(Z,X)

!GWT-DS, I,I,l("ALIB",GRP ,WT,MASK,MASK)
{MASS - MASS + GWT

_GWT-FREE0
*ECHO 4

$EXITING: (MASS GRP2)
*NOECHO 4
*RETURN
* ENDMGRP2

58

$
*(ELEM MBED) ENDEMBED
*ECHO 4

$ ENTERING (ELEM MBED)
*NOECHO 4

$ routine which takes datasets produced by processor MBED
$ tables of elements in group
$ tables of element section properties
$ and embeds the section property of perturbed elems into EFILE
$
$ LOOP THRU ITEMS IN EMBE GRP DATASET

!NENT - TOC,NJ("ALIB" EMBE GRP MASK MASK)
NGRP - 0

*LABEL GRPLOOP
!NGRP - NGRP + 1

*IF('_IGRP" GT '_-ENT"): *GO TO EGRLOOP
IEXX.DS,I,"NGRP",ICALIB",EMBE,GRP,MASK,MASK) $ GET ELEMENT TYPE
!GRP-DS,2,'"NGRP",I("ALIB",EMBE,GRP,MASK,MASK) $ GET GROUP NUMBER

!END - TOC,NI("ALIB" EMBE EFIL 1 1)
!END - END - 5

*XQT EI 1
EMBED
SOURCE - "ALIB" EMBE EFIL "NGRP"
CONTENT SPECIFICATION

MATERIAL, 1, 6
SECTION, 2, "END"

DEST - "EXX" "GRP"
* GOTO GRPLOOP
*LABEL EGRLOOP

*XQT DCU
*ECHO 4

$ EX1TING: (ELEM MBED)

*XQT DCU
*NOECHO 4
*RETURN
* ENDEMBED

$

$
*(CALC PEN) ENDPEN
*ECHO 4

$ ENTERING: (CALC PEN)
$ COMPUTE PENALTY FOR THE VIOLATED CONSTRAINTS
*NOECHO 4
$

*XQT AUS
INLIB -"ALIB"
OUTLIB -"ALIB"
$
$ t'md number of violated constraints

!LENG - TOC,NWDS(1 G ADS 1 1)
TABLE(NI_I,NJR'_ENG"): DUMM : INIT- 0.0 $ A 0% CUTOFF
DEFINE G - 1 G ADS 1 1 $the constraint dataset

JZER - JLIST(ANY G GT DUMM)
!LENZ - TOC,NWDS("ALIB" JZER MASK MASK MASK) $ # of violations
!GLARGE - 0.0

*IF('_ENZ" EQ 0):*GOTO NOPEN $ if no constraints violated - no penalty

59

$

$ compute the penalty
DE1

SOURCE-1GADS1 I:DEST-GADS 1 1
JS - JZER : EX1

DEFINEG- GADS 1 1

TABLE(NI-1,NJ-1,TYPE=d): TMP2 $ SUM OF THE VIOLATED CONSTRAINTS

TRANSFER(SOURCE-G, JLIM-'LENZ",DSKIP --1,OPER - SUM)
EXIT

!GLARGE - DS, I,I,I("ALIB" T MP2 AUS MASK MASK) $sum of violated constraints
!GLARGE = GLARGE*KPEN $ HERE ASSUME THAT LARGEST LM < KPEN

$
*LABEL NOPEN

!NEWPEN - DS,I,I,I(1 F ADS 1 1) $ objective (total mass)
!NEWPEN - NEWPEN + GLARGE $ objective + penalty
$
*ECHO 4

$ EXITING: (CALC PEN) $ COMPUTE PENALTY FOR VIOLATED CONSTRAINTS
*NOECHO 4
$
*RETURN
* ENDPEN
$

.. *

$
*(UPDA GRAD) ENDUPDA
*ECHO 4

$ ENTERING: (UPDA GRAD)
$ UPDATE CONSTRAINT GRADIENTS USING APPROX. METHOD
*NOECHO 4

$

* XQT AUS
ERASE "ALIB"
INLIB-"ALIB"
OUTLIB-"ALIB"
DEFINE G - 1 G ADS 1 1 $ Constraints form CONS with new DVs

DEFINE GLIN - "SLIB" GLIN ADS $ Linear approx from optimizer
DEFINE X - 1 X ADS 1 1 $ New DVs from optimizer
DEFINE XOLD = "SLIB" X ADS 1 1 $ DVs from prior to optimization
DELG - SUM(G, -1. GLIN) $ Difference of calculated and linear cons

DX - SUM(X, -1. XOLD) $ Change in DVs during optimization
DEFINE DG - 1 DG ADS 1 1

DGDG - UNION(DG)
TABLE,U(TYPE--1): DGDG $ create table of DG**2 terms
TRANSFER(S OURCE_DG,OPER-MULTIPLY)
DXDX - _ON(DX)

TABLE,U(TYPE,--1): DXDX $ create table of DX**2 terms
TRANSFER(SOURCE-DX,OPER-MULTIPLY)

DENM-RPROD(DXI)X,DGDG) $1 BY NCON vector of DX**2 * DG**2
$ compute updates to constraint derivatives

INCON = TOC,NJ("ALIB" DENM MASK MASK MASK) $
TABLE(NI-1,NJ - "NCON"): DUM : INITIAL - 1.E-14 $ AVOID DIVIDE BY
TABLE,U(TYPE--1): DENM $ ZERO
TRANSFER(SOURCE-DUM,OPER-SU/Vl) $

TABLE,U(TYPE--1): DELG
TRANSFER(SOURCE - DENM,OPER-DIVIDE)

DXT - RTRAN(2. DX) $ NDVI BY 1
ALl - RPROD(DXT,DELG)

60

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

PL,biCr_ t:,ur_ =orthisO_=C_i_,OI i_o._ior, p e6ti,'f_+ to_em_e 1 hour,= r.epo_, _ciud_ thetwo tor.rv_. r_ I,=r_ior=. lo=_ ex=,_ ¢=.= ,_. _..

COle_lOfl Of I_ormatio¢l, in(:dudortgiu_lttlons for rDoucln_ this,burdeft, to WaSnli_ton t-teaoquattortr,_41rvlce_. L.qr_o__llto lot h'dor/T_l_, ._41_KlrlS lirlo H41LXI___ .- I Cuo jqmerlorl Dark
HJghway, Suilo1204, Aringto_n. VA 22202-4.q(_,ancltolheO_=ca, otManageme,ntltclBudget, P,Iq:)efworkReduct_onPro_l 0704-0 88), mhln_.DC 20503.

1. AGENCY USE ONLY (Leave blank) i2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

October 1996 Contractor Report
4. TITLE AND SUBTITLE i ,5. FUNDING NUMBERS

Documentation for a Structural Optimization Procedure Developed Using C NAS1-19000

the Engineering Analysis Language (EAL)

6. AUTHOR(S)

C. J. Martin, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Lockheed Martin Engineering and Sciences
144 Research Drive

Hampton, VA 23666

9. SPONSORING/ MONITORINGAGENCYN_JdF..(S)ANDADDRESS(F.S)

National Aeronautics and Space Administration

Langley Research Center
Hampton, VA 23682-0001

W-U 537-06-34-20

8. PERFORMING ORGANIZATION
REPORT NUM BER

10. SPONSORING t MONITORING
AGENCY REPORT NUMBER

NASA CR-201632

11. SUPPLEMENTARYNOTES

Langley Technical Monitor - Stephen J. Scotti

1-- mSTmBU'rioN/ AVA=LAmUTYSTATEMENT

Unclassified - Unlimited

Subject Category 39

12b, DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report describes a structural optimization procedure developed for use with the Engineering Analysis
Language (EAL) finite element analysis system. The procedure is written primarily in the EAL command
language. Three external processors which are written in FORTRAN generate equivalent stiffnesses and

evaluate stress and local buckling constraints for the sections. Several built-up structural sections were coded
into the design procedures. These structural sections were selected for use in aircraft design, but are suitable

for other applications. Sensitivity calculations use the semi-analytic method, and an extensive effort has been
made to increase the execution speed and reduce the storage requirements. There is also an approximate
sensitivity update method included which can significantly reduce computational time. The optimization is

performed by an implementation of the MINOS V5.4 linear programming routine in a sequential liner
programming procedure.

14.SUBJECTTERMS

Structural Optimization, Structural Sensitivity Analysis

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

63

16. PRICE CODE

A04

20. LIMITATION OF ABSTRACT

Standard Form 298 (Roy. 2-89)
PmlO'I_KI by ANSI Std. Z39-18
2t_-102

TABLE,U(TYPE--1): AIJ
TRANSFER(SOURCE.=DGDG,OPER-MULTIPLY)

$ add updates to constraint data
TABLE,U(TYPF_,=-I):I DG ADS 1 1

TRANSFER(SOURCF.=AU,OPER-SUM)
EXIT

!EXACT = 0
$
*ECHO 4

$ EXITING: (UPDA GRAD) $ UPDATE CONSTRAINT GRADIENTS USING APPROX. METHOD
*NOECHO 4
$
*RETURN
* ENDLrPDA

$
*(SENS FILT) ENDFILT
*ECHO 4

$ ENTERING: (SENS FILT)
$ CHOOSE WHICH ELEMENT GROUPS NOT TO CALCULATE STRESS SENSITIVITIES FOR
*NOECHO 4
$
*XQT AUS
INLIB- "ALIB"
OUTLIB-- "ALIB"

!NACT-TOC,NJ (1 COMP GRP MASK MASK)
!LOOP=0
*LABEL GLOOP $ LOOP THRU COMP GROUP DATASET

!LOOOP-LOOP+l

*IF('T.OOP" GT "NACT'_: *GO TO EGLOOP
!EXX-DS,3,'_OOP",I (1,COMP GRP 1 1)
!NGRP-DS,4,'_OOP",I (1,COMP GRP 1 1)

$ fredmaxixum constraint value

DEFINE G - 1 '_EXX" CON 'WNST" '_NGRP" $ element constraint dataset
R4AX=MMI(G)

[MAX - DS,I,1,I,("ALIB"JMAX MASK MASK MASK) $ # ofviolations

*[F("MAX" GT "GLIM"):*GOTO NOCHNG $ constraints> glim so calcstresses
TABLE,U(TYPE-0); 1 GACT 'EXX"

I=1: J-"NGRP": 0 $ else don't calc stresses
*LABEL NOCHNG

*GO TO GLOOP
*LABEL EGLOOP
*ECHO 4

$ EXITING: (SENS FILT) $ CHOOSE ELEMENT GROUPS NOT TO CALCULATE STRESS SENS FOR
$
*RETURN
* ENDFILT
$

*DCALL(DRIV OPT)
*XQT DCU
COPY13DRXl 1
COPY 1 3 DR DIF 1 1

*XQT EXIT

61

